
Raisonance Tools
STM8/ST7

Getting Started

Document version
24 March 2017

Raisonance Tools for STM8/ST7

Contents

1. Introduction..5

1.1 Purpose of this manual.. 5

1.2 Scope of this manual... 5

1.3 Additional help or information..5

1.4 Raisonance brand microcontroller application development tools..5

2. Ride7 and RKit-STM8 overview...6

2.1 RKit-STM8... 6

2.2 Third party tools used in conjunction with RKit-STM8..7

2.3 Supported derivatives.. 7

2.4 Installing Raisonance Tools for STM8/ST7..7

2.5 Example projects... 7

3. Register the Raisonance tools for STM8/ST7...8

3.1 Install and activate the new software...8

3.2 Register using a serial key...8

3.3 Register using a dongle... 8

4. Building a new project..9

4.1 Creating a new project... 9

4.2 Creating a STM8 project.. 9

4.2.1 Creating the application..9

4.3 Creating a ST7 project...10

4.3.1 Creating the settings for the new application..10

4.3.2 RBuilder start-up...10

4.3.3 Configuring the peripherals from RBuilder..11

4.3.4 Generating your project..13

4.3.5 Adding your application code..13

4.3.6 Main file.. 13

4.4 Adding your code to the project...16

5. Debugging with simulator...17

5.1 About the STM8/ST7 simulator..17

5.2 STM8/ST7 derivatives supported by RKit-STM8..17

- 2 -

Raisonance Tools for STM8/ST7

5.3 Peripherals and main file used in example project...17

5.4 Launch the simulator...18

5.5 Debug options.. 19

5.6 Debug controls... 19

5.7 Peripheral status view..19

5.8 Breakpoints.. 20

5.8.1 Code view... 20

5.8.2 Source view.. 21

6. Debugging with hardware tools...22

6.1 Selecting hardware debug tool...22

6.2 RLink programming (ICP) and debugging (ICD) features..23

6.2.1 RLink USB driver.. 23

6.3 REva board.. 23

6.4 Configuring RLink STM8..24

6.4.1 RLink STM8 Instant actions..24

6.4.2 Jumpers for RLink STM8 using ADP..25

6.4.3 Jumpers for STM8 REva board..25

6.5 Configuring RLink ST7...26

6.5.1 Option bytes.. 27

6.5.2 Instant actions.. 28

6.5.3 RC calibration... 28

6.5.4 Jumpers for RLink ST7 using an adapter...28

6.5.5 Jumpers for ST7 REva board...29

6.5.6 Advanced breakpoints..30

6.6 Hints and troubleshooting..31

6.6.1 Example projects.. 31

6.6.2 Testing USB driver, connections and power supplies...31

6.6.3 Debug pins... 31

6.6.4 Handling option bytes for ST7...31

6.6.5 Handling option bytes for STM8..32

6.6.6 Command-line programming tool...32

6.6.7 Protected addresses...32

6.6.8 Limitations of RLink compared to the emulators...32

6.6.9 Limitations for ST7 HDFlash targets without debug module...34

7. ICD-compliant application board...36

7.1 SWIM connector for STM8..36

7.1.1 SWIMDATA pin.. 36

- 3 -

Raisonance Tools for STM8/ST7

7.1.2 SWIMRESET pin.. 36

7.1.3 VDD_APPLI pin..36

7.2 ICC connector for ST7... 37

7.2.1 ICCDATA and ICCCLK pins...37

7.2.2 ICCRESET pin..37

7.2.3 ICCSEL/VPP pin... 37

7.2.4 ICCOSC pin.. 37

7.2.5 VDD_APPLI pin..38

8. Raisonance solutions for STM8/ST7 upgrades...39

8.1 RKit-STM8-Lite versus RKit-STM8-Enterprise...39

8.2 RKit and RLink options.. 39

9. Conformity..40

10. Glossary...41

11. Index..42

12. History..43

- 4 -

Raisonance Tools for STM8/ST7 1. Introduction

1. Introduction
Ride7 is the Raisonance brand integrated development environment (IDE), designed for the
development of ST7 and STM8 projects from beginning to end.
The RKit-STM8 plug-in for Ride7 provides the tools necessary to build ST7 and STM8-based projects:

• Compile chain (Assembler, C compiler and linker) for building applications.
• Software simulator for validating applications.
• Hardware debugger for debugging with an RLink and associated platforms (Open4, EvoPrimer,

REva).
• RFlasher GUI and command-line interfaces for programming the Flash of ST7/STM8 devices

through RLink during production.
• (ST7 only) RBuilder wizard to help users build their applications from scratch with minimum

knowledge of the ST7 architecture and peripherals. This builder takes users through peripheral
configuration and generates the necessary code in a start-up project.

1.1 Purpose of this manual
This guide should be used by anyone who is interested in building ST7/STM8 projects using Ride7.

1.2 Scope of this manual
It is assumed that the reader already has experience with at least one programming language, such as
C, C++, JScript, VBScript or Python. This guide does not describe the basics of procedural
programming such as functions, conditional branching and looping.

1.3 Additional help or information
If you want additional help or information, if you find any errors or omissions, or if you have suggestions
for improving this manual, go to the IoTize site for Raisonance microcontroller development tools
www.raisonance.com, or contact the microcontroller support team.

Microcontroller website: www.raisonance.com
Support extranet site: support.raisonance.com (software updates, registration, bugs database, etc.)
Support Forum: forum.raisonance.com
Support Email: support@raisonance.com

1.4 Raisonance brand microcontroller application development tools
February 1, 2017, Raisonance became the brand under which the company IoTize sells its
microcontroller hardware and software application development tools.
All Raisonance branded products regardless of their date of purchase or distribution are licensed to
users, supported and maintained by IoTize in accordance with the companies' standard licensing
maintenance and support agreements for its microcontroller application development tools. For
information about these standard agreements, go to:
Support and Maintenance Agreement: http://www.raisonance.com/warranty.html
End User License Agreement: http://www.raisonance.com/software-license.html

- 5 -

http://www.raisonance.com/software-license.html
http://www.raisonance.com/warranty.html
mailto:support@raisonance.com
http://forum.raisonance.com/index.php
http://support-raisonance.com/
http://www.raisonance.com/

Raisonance Tools for STM8/ST7 2. Ride7 and RKit-STM8 overview

2. Ride7 and RKit-STM8 overview
RKit-STM8 defines the software and hardware tools for creating, compiling and debugging
applications. For a full range of STM8 and ST7 microcontrollers.
The following table shows the set of tools that compose the RKit-STM8:

2.1 RKit-STM8
There are three versions of the RKit-STM8 (see Section 8 for details).

• Basic license includes programming and debugging of STM8/ST7 with no limitations.
Compiler up to 2KB code. Activated using RLink/REva/Open4/EvoPrimer.

• Lite license includes programming and debugging of STM8/ST7 with no limitations.
Compiler up to 32KB code. Activated using Serial Key, Dongle.

• Enterprise license includes programming, debugging and compiling of STM8/ST7 with no
limitations. Activated using Serial Key, Dongle.

RKit-STM8 comes supplied with a number of ST7/STM8-specific tools from Raisonance:
• Ride7: Integrated development environment which is the interface for all the other tools.

Provides an editor, a project manager (no need for a Makefile) and a debug user interface that
can be used either with the simulator or with most available hardware-debugging tools. It can be
used by several microcontroller families, including ST7/STM8, ARM and uPSD.

• Compile Chain: Raisonance C toolchain, composed of C Compiler, Assembler and Linker which
allows you to write applications in C and/or assembler.

• Simulator: Simulates core (including the entire memory space) and most peripherals. Complex
peripherals (USB, CAN) and some less common peripherals are not simulated.

• CodeCompressor: A post link optimization tool that can reduce code size. It accepts as input
any executable code, whether from assembler, C or any other source (libraries...).

• RBuilder: A GUI that configures the ST7 peripherals used by the application, and generates the
corresponding source code (in C) for the peripherals, using the ST firmware library.

• RFlasher7: A graphical user interface for Flash programming.
• RLink support: Ride7 can communicate with the RLink, which is a USB hardware dongle that

allows the user to program the ST7/STM8 on an application board and debug the application
while it is running on the ST7/STM8. It uses the ICC or SWIM protocol. For more information
refer to chapter “Debugging with hardware tools”.

Each tool mentioned above has a dedicated user manual (please refer to the appropriate manual for
more details) apart from Ride7, the simulator and RLink.

- 6 -

Integrated
development
environment

Software
development

tools

Hardware

 Ride7 RFlasher7

RKit-STM8

SIM-STM8

RLink driver

RLink hardware
(ICC, SWIM interfaces)

Library
Examples (sources)

Application hardware

Assembler MASTM8
Compiler RCSTM8

Linker RLSTM8
CodeCompressorCodeCompressor

C toolchain

RBuilder (ST7)

Raisonance Tools for STM8/ST7 2. Ride7 and RKit-STM8 overview

2.2 Third party tools used in conjunction with RKit-STM8
RBuilder is a 100% Raisonance product. However it uses the ST7 libraries for most of the code it
generates. This implies that as the ST library evolves, so will the code generated by RBuilder (starting
from the same set of options). See http://www.st.com/

2.3 Supported derivatives
RKit-STM8 supports most of the existing STM8 and ST7 (those with ICC not ISP) derivatives to various
degrees. An up-to-date list of supported derivatives and software simulation limitations can be seen in
Ride7 when creating a new ST7/STM8 project (Project | New project): Browsing through the list of
available devices displays some detailed characteristics in the “description field”.

2.4 Installing Raisonance Tools for STM8/ST7
When installing Ride7 and RKit-STM8, make sure you have the latest software version from the
Raisonance website: http://www.raisonance.com/download/

2.5 Example projects
RKit-STM8 contains example projects written in C or assembler that are ready to run. Each example is
described in the comments in the application's source files.
To open a project, for example Towers:

1. Click on Project > Open Project in Ride7.
2. Navigate to the Ride installation directory, then in

“Examples\STM8\C\Towers”.
3. Click on Towers.rprj and Open.

The Project example file,Towers opens. In this example project, you can modify the debug values and
then build to view the result.

- 7 -

http://www.raisonance.com/download/

Raisonance Tools for STM8/ST7 3. Register the Raisonance tools for STM8/ST7

3. Register the Raisonance tools for STM8/ST7
The new Ride7 and RKit-STM8 must be registered to operate correctly. Registration requires a
Raisonance software product license that is under a valid support contract (a standard support contract
expires one year after the date of purchase).
To activate the software you must register your RKit-STM8 using your RKit-STM8 license (Serial Key or
Dongle).
Unregistered software functions for a 30-day evaluation period with full features of the Enterprise
version. After 30 days the software can no longer be used. If this occurs, contact
info@raisonance.com.

3.1 Install and activate the new software
Perform these steps to install your new software:

1. Remove old versions of Ride7 and RKits.
2. Install the new Ride7 software, then the RKit-STM8 software, then validate its operation (test

compilation, connection to RLink and to target CPU, etc.).
3. Launch Ride7 and if the Serialization Choice popup does not appear, select Help > License.

Activate your software by providing one of the following:
a. Software serial key (purchasers of RKit-xxx-Enterprise or RKit-xxx-Lite tool sets).
b. Hardware dongle (purchasers of RKit-xxx-Enterprise or RKit-xxx-Lite tool sets).
c. RLink serial number (purchasers of RLink, REva, Open4 EvoPrimer).

4. Register the software by selecting the menu item Help > License...

Note: During the registration process, you will be notified if your product's support contract has expired.
This notification includes information about how to renew your tool's support contract. If necessary users
can always activate versions of the STM8 software that were released during their one-year support and
maintenance contract for that product.

3.2 Register using a serial key
1. Launch Ride7
2. Select Help > License...
3. Select Serial Key Activation, click on Next
4. Paste the your Serial Key in the provided field
5. Click on Next
6. Click on Get Activation code online

3.3 Register using a dongle
1. Launch Ride7
2. Connect your RLink, REva, EvoPrimer, Open4 or USB dongle to a USB port on the PC
3. Select Help > License...
4. Dongle activation for USB dongles, click on Next

Ride detects your hardware and reads its serial number.
5. Click on Get Activation code online

These registration procedures are also detailed on www.support.raisonance.com.

- 8 -

Raisonance Tools for STM8/ST7 4. Building a new project

4. Building a new project

4.1 Creating a new project
1. Click on the Project tab in the Ride7 menu.
2. In the drop down menu, click on New Project.

4.2 Creating a STM8 project

4.2.1 Creating the application
To create the settings, follow the order below:

1. Select the Type of application to be built.
2. Select the type of Processor e.g. STM8L051F3.
3. Create a Name for the project e.g. Application0
4. Select a directory Location e.g. C:\Program Files\Raisonance\ride\examples\
5. Click on Finish to generate your application. Your application project is now created.

- 9 -

Raisonance Tools for STM8/ST7 4. Building a new project

4.3 Creating a ST7 project

4.3.1 Creating the settings for the new application
To create the settings, follow the order below:

1. Select the Type of application to be built.
2. Select the type of Processor e.g. ST72521R9.
3. Create a Name for the project e.g. Application0
4. Select a directory Location e.g. C:\Program Files\Raisonance\ride\examples\
5. Tick Launch RBuilder to generate source files.
6. Select the radio button Create a new project.
7. Press Finish.

4.3.2 RBuilder start-up
RBuilder is an application builder based on the STM8/ST7 software library.
With RBuilder you can:

● Configure a project.
● Generate a project skeleton containing all the necessary code.
● Add your own code.
● Execute the application.

When the project settings have been set and validated with Finish, the following RBuilder start-up
screen appears:

- 10 -

Raisonance Tools for STM8/ST7 4. Building a new project

The screen is divided into 5 different zones:
● Zone 1 displays the peripherals associated with the microcontroller you are using. This view is

called the project tree. To use and configure a peripheral, select it in the tree and the options
associated with the selected peripheral are displayed in Zone 4.

● Zone 2 shows you which file will be added to your project. This list changes while you are
adding/removing peripherals to your project.

● Zone 3 displays the datasheet of your microcontroller and the ST7 software library manual.
● Zone 4 displays the options related to the selected peripheral. This view is called the Option

View.
● Zone 5 displays the online help which guides you through the configuration of your project.

4.3.3 Configuring the peripherals from RBuilder
Once you are in RBuilder, you can configure the peripherals for your project.
Some peripherals, like the I/O ports, offer the option to generate sample code. If you check this option,
sample code is placed in the main function.

Example 1 Port A: I/O ports
This example shows how to use the basic library functions related to the associated peripheral(s).

1. To add I/O support to your project, click on the I/O peripheral on the left (in the project tree), as
shown in the screen shot below. The peripheral will be unblocked and the ‘no entry’ sign
disappears.

2. Tick the Option check box of each peripheral you would like to add.
3. In the example below, tick the check box Configure and Use IO
4. Then click on Options for the current Peripheral/File view.

- 11 -

 2

 3

 4

 5

 1

Raisonance Tools for STM8/ST7 4. Building a new project

5. The available options for the peripheral appear and, for I/Os, the list of available ports is added
in the project tree. If no port is selected, only one option is available for I/Os. However, when a
specific port is selected in the project tree, more options are displayed.

6. Click on Port A to show the definable settings. Each pin of the PORT is easily configured using
a combo box which lets you specify if the pin is either a floating INPUT, a pull-up interrupt
INPUT, an open-drain OUTPUT or a push-pull OUTPUT as shown in the next screen shot.

Configure other peripherals
To select other peripherals, simply select the desired peripheral in the project tree as in the I/O
example above, tick the Option checkbox and configure as you wish.

- 12 -

Raisonance Tools for STM8/ST7 4. Building a new project

4.3.4 Generating your project
Once you have configured your project:

1. Select Project Generation in the Actions menu:
2. After doing this, RBuilder generates the sample/prototype

application code based on the project configuration, and
notifies you when generation is complete.

3. RBuilder then closes and returns to the main Ride7 window.
4. You can now compile the project.

Warning: Once the project is generated, there is no way to go back to modify one option and
generate it again. If you find out that you were mistaken about an option, then you have to
restart the project creation process from the beginning.

4.3.5 Adding your application code
Once you are back in Ride7, source files will be added to your project. Most of the files in your project
are generated from the STM8/ST7 software library according to the configuration options that you
specified in RBuilder. These files should not need to be edited.
Two additional files are generated: myprojectmain.c and myprojectint.c

● myprojectmain.c is the main file of the project. In this file, RBuilder generates the initialization
function for all peripherals, the main() function and any user requested functions (for
example putchar and getchar for the SCI.

● myprojectint.c contains all the interrupt functions. This file is generated only if the user
selected the use of interrupts in RBuilder. Otherwise it is not part of the project.

4.3.6 Main file
The following is an example of a main file, generated by RBuilder, for which the following peripherals
have been selected:

● I/Os

- 13 -

Raisonance Tools for STM8/ST7 4. Building a new project

● Timer
● SCI
● ADC

In this file, you can see:
● The PeriphInit function (blue arrow) performs initialization for all peripherals according to

the options you selected in RBuilder.
● The main function (green arrow) is made of a call to PeriphInit to initialize all peripherals,

followed by an infinite loop that contains the application code. RBuilder gives you the possibility
to generate sample code for almost every peripheral. This example contains code for the ADC,
the SCI and I/Os. You just need to add your specific code at the end of the function (red
arrow).

● The TERMIO_PutChar function (brown arrow) is generated when you select Generate a
putchar function in RBuilder's SCI options section.

/*== */
/* Project: Application0 */
/* File: Application0main.c */
/* Organization: */
/* Author: (initial version generated by RBuilder) */
/* Date: 5/6/2008 */
/*== */
#include "ST7lib_config.h"
#include <stdio.h>
/* --- */
/* Function: PeriphInit */
/* Purpose: Periph configuration at RESET */
/* Date: 5/6/2008 */
/* --- */
void PeriphInit (void) {

 /* A/D Converter initialization */
 ADC_Init(ADC_DEFAULT);
 ADC_Select_Channel(3);

 /* SCI initialization */
 SCI_Init(SCI_DEFAULT_PARAM1, SCI_DEFAULT_PARAM2);
 /* NOTE: Baud rate calculation is performed for Fcpu= 6000000 Hz */
 SCI_Select_Baudrate(0x0);
 SCIERPR = 0x27; /* Set RX Baudrate (real= 9615) */
 SCIETPR = 0x27; /* Set TX Baudrate (real= 9615) */
 SCI_Mode(SCI_TX_ENABLE|SCI_RX_ENABLE);

 /* 16-bit timers initialization */
 TIMERA_Init(TIMER_FCPU_4); /* Timer A */

 /* I/O Port initialization */
 IO_Init();

- 14 -

Raisonance Tools for STM8/ST7 4. Building a new project

 IO_Input(IO_FLOATING_IT, IO_PORT_B, 0x88);
 IO_Input(IO_PULL_UP_IT, IO_PORT_B, 0x77);
 IO_Output(IO_PUSH_PULL, IO_PORT_F, 0x87);
 IO_Input(IO_FLOATING_IT, IO_PORT_F, 0x88);

}/* end of PeriphInit */

/* --- */
/* Function: main() */
/* Purpose: main routine */
/* Date: 5/6/2008 */
/* --- */
void main (void) {

 /* Configure the internal peripherals */
 PeriphInit();
 while (1){
 {
 /* * * * Sample code for the ADC * * *
 This code works with the REva evaluation board. It performs the following:
 a. Measurement of the voltage set by the potentiometer
 b. Translation to a value that fits into the range [0,7]
 c. Copy of the resulting value to the Port F (LEDs as a gauge). */
 int Conv_Data1;
 const char array_Val_Gauge [8] = {0xFE, 0xFC, 0xF8, 0xF0, 0xE0, 0xC0, 0x80, 0x00};
 ADC_Select_Channel(3); /* Select channel 3 */
 ADC_Enable(); /* Start conversion ADON bit is set */
 while (!ADC_Test_Conversn_Complete()); /* Wait till conversion completes */
 Conv_Data1 = ADC_Conversn_Read(); /* Read converted value */
 if (!Conv_Data1) {
 IO_ByteWrite(IO_PORT_F, 0xff); /* Write Port F: all LEDs switched off */
 }
 else {
 Conv_Data1 >>= 7; /* Keep the 3 Most Significant Bits */
 IO_ByteWrite(IO_PORT_F, array_Val_Gauge[Conv_Data1]); /* Write Port F */
 }
 ADC_Disable();
 }
 /* Sample code for SCI */
 puts("Hello world");
 /* Insert your code here... */

 }
}/* end of main */

- 15 -

Raisonance Tools for STM8/ST7 4. Building a new project

/* --- */
/* Function: TERMIO_PutChar */
/* Purpose: Putchar in polling mode on SCI */
/* Date: 5/6/2008 */
/* --- */
void TERMIO_PutChar(char c){
 if (c == '\n'){
 SCI_PutByte ('\r');
 while (!SCI_IsTransmitCompleted());
 }
 SCI_PutByte (c);
 while (!SCI_IsTransmitCompleted());
}

/* --- */
/* Function: TERMIO_GetChar */
/* Purpose: Getchar in polling mode on SCI */
/* Date: 5/6/2008 */
/* --- */
unsigned char TERMIO_GetChar(void){
 unsigned char c;
 while(SCI_IsReceptionCompleted()!=SCI_RECEIVE_OK);
 c = SCI_GetByte();
 return(c);
}

4.4 Adding your code to the project
Now that you have a project, you need to add your application code.

1. To add your source files, select Project > Add item.
This opens a file selection window where you add your source files in C or assembler.

2. To rebuild the application, just press F9 or select Project > Make All.
3. You can now debug your application with the simulator.

If you don't have source files, you can create your own, by selecting File > New … > Source File
You can now enter your code. To save it, go to File > Save

- 16 -

Raisonance Tools for STM8/ST7 5. Debugging with simulator

5. Debugging with simulator

5.1 About the STM8/ST7 simulator
RKit-STM8 provides a simulator capable of simulating the most common STM8/ST7 peripherals. The
simulator lets you check your code as well as the interaction between your code and the peripheral,
before you debug with an in-circuit debugger or emulator.

5.2 STM8/ST7 derivatives supported by RKit-STM8
RKit-STM8 supports most of the existing STM8/ST7 derivatives to various degrees. The up-to-date list
of supported derivatives and the limitations of the software simulation can be seen in the Target
Options in Ride7.

5.3 Peripherals and main file used in example project
For the rest of this document we use a project that uses the following peripheral I/Os:

● PORT A Pin 1 > Output (push/pull)
● PORT A Pin 2 > Output (push/pull)
● PORT A Pin 3 > Output (push/pull)
● PORT A Pin 4 > Output (push/pull)

The following code has been written in the main function:
int toggle = 0; /*This declaration goes at the beginning of the main*/

IO_Write(IO_PORT_A, IO_PIN_0, (toggle == 0)?IO_DATA_HIGH:IO_DATA_LOW);
IO_Write(IO_PORT_A, IO_PIN_0, (toggle == 1)?IO_DATA_HIGH:IO_DATA_LOW);
IO_Write(IO_PORT_A, IO_PIN_0, (toggle == 2)?IO_DATA_HIGH:IO_DATA_LOW);
IO_Write(IO_PORT_A, IO_PIN_0, (toggle == 3)?IO_DATA_HIGH:IO_DATA_LOW);

if(++toggle==4)
toggle = 0;

So you can easily build this project to use the simulator, as described in the chapter “Building a new
project in RBuilder”.

- 17 -

Raisonance Tools for STM8/ST7 5. Debugging with simulator

5.4 Launch the simulator
Before launching the simulation, you must configure the debugger.
To launch the simulator, type CTRL-D. If your project has not been built, it will be built automatically
before the simulator launches. Otherwise, the simulator launches immediately and you are now in the
simulator. Your Ride7 window looks like the following:

The screen shot above shows:
1. Application0main.c: The source file as edited in C language or in assembly language.

The Code window that shows you the instruction to be executed by the simulator.
2. Disassembly View:This shows an image of the code in the Flash memory of the target.
3. Debug peripheral tree.
4. Project options window: Application and Advanced Options.
5. Debug output.
6. Toolbar which allows the user to control the simulation. (more information in the next section)

The following columns are available in the Code window -(Disassembly view):
● Address: The address where the instruction is located.
● Symbol: The name of the symbol, if a symbol is located at this address.
● Code: The byte-code located at this address.
● Mnemonic: The mnemonic corresponding to the byte-code.
● Code Coverage: The number of times the byte-code at this address has been executed.

- 18 -

Raisonance Tools for STM8/ST7 5. Debugging with simulator

5.5 Debug options
Choose the debugging environment:

● ST7 simulator or STM8 simulator for software debugging.
● RLink ST7 or RLink STM8 for hardware debugging. (see Chapters 6 and 7).

5.6 Debug controls
The debugging (software or hardware) is controlled by the debugger tool bar:

1. Make: Build the project (F9)
2. Cancel Make: Stop building the project
3. Start debug session (Ctrl D)
4. Stop debug session (Shift + Ctrl D)
5. Run debug (Ctrl F9)
6. Pause debug
7. Reset: Press this button to reset the application. (Ctrl F2)
8. Step into: On a function call in a line of the C source code, this button steps into the called

function. If it is not a function call, it goes to the next line in the source code. (F7)
9. Step over: On a function call in a line of the C source code, this button steps over the called

function. (F8)
10. Step out Exit functions (Shift + F7)
11. Run to (Ctrl Q)
12. Toggle breakpoint (F5)
13. Clear all breakpoints

5.7 Peripheral status view
To view the status of a peripheral, you must open it by clicking on the corresponding item in the Debug
peripheral tree.
For example, to simulate Port A (PA), double click on the PA icon in the Debug peripherals tree (see
section 4.4).
A PORT A view appears which shows the state of each pin of the port and lets
you modify the registers:

• Green indicates a value of one and red a value of zero.
• By clicking on the LED it is possible to connect each pin of the port to a Net,

to VCC, the Ground or no connection.

- 19 -

 1 2 3 4 5 6 8 9 7 10 11 12 13

Raisonance Tools for STM8/ST7 5. Debugging with simulator

5.8 Breakpoints
You can set a breakpoint either in the source file or in the code view.

5.8.1 Code view
In the code view, first select the line on which you want to stop. The line becomes grey:

Then click on the Toggle Breakpoint button and the line becomes red:

This means that a breakpoint has been set on this line.

- 20 -

Raisonance Tools for STM8/ST7 5. Debugging with simulator

5.8.2 Source view
The application stops running when this line is reached and the line turns pink.
You can use the same procedure to set a breakpoint on a line of source code, or you can click on the
pink square in the margin next to the instruction. When you click on the pink square, a red dot appears,
indicating that a breakpoint has been set:

- 21 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6. Debugging with hardware tools
RKit-STM8 can be used with a number of hardware debug tools (in addition to the Raisonance
simulator):

• RLink ST7 for in-circuit debugging ST7 applications using the ICC (not ISP) protocol.
• RLink STM8 for in-circuit debugging STM8 applications using the SWIM protocol.

Note: From a user interface point of view, basic debugging functions (stopping and resuming CPU
execution, setting a breakpoint, single-stepping, checking memory and registers, etc.) are identical,
whether you are using the simulator or a hardware debug tool. Refer to the previous chapter and get
familiar with the simulator before starting to work with the hardware debug tools.

6.1 Selecting hardware debug tool
In the Advanced STM8/ST7 > Debug environment > Debug tool menu of Ride7 choose your target
hardware debugger. Select the tool that corresponds to your debug hardware e.g. RLink_ST7. You
should select RLink if you are using:

• RLink connected to the target STM8/ST7 on your application board via an ICC/SWIM connector,
• REva evaluation board, which includes an embedded RLink.
• Primer stick (ST7UltraLite, ST7FOX, STM8A, ...), which includes an embedded RLink.

- 22 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.2 RLink programming (ICP) and debugging (ICD) features
The RLink is a USB interface device designed by Raisonance. It allows In-Circuit-Programming (ICP)
and In-Circuit-Debugging (ICD) of various microcontrollers, including all the ST7 and STM8 devices
supported by RKit-STM8. (see the up-to-date list in the Target Options).

Note: ST7 devices with HDFlash and no debug module can be programmed, but debugging through ICC
is very limited with them. (See Section 5.6.9 Limitations for ST7 HDFlash targets without debug module
for more information).

With the ST7 devices, RLink uses the In-Circuit-Communication (ICC) protocol from ST to perform ICP
and ICD. RLink versions up to V2.02 feature the standard 10-point ICC connector, as defined by ST,
directly on the RLink. Version 3.0 and earlier versions require an adaptor that converts the 24-point
RLink connector to a 10-point ICC connector.

Note: ST7 devices that do not support the ICC protocol are not supported by the Raisonance tools.
These devices use the ISP or other protocols. Please contact ST for information about tools supporting
these devices.

With the STM8 devices, RLink uses the Serial Wire Interface Module (SWIM) protocol from ST to
perform ICP and ICD. RLink versions 3.0 and earlier require an adaptor to feature the standard 4-point
SWIM connector as defined by ST. RLink V2.02 and older versions cannot be used with STM8.

6.2.1 RLink USB driver
Windows automatically recognizes when an RLink is plugged in, then it must associate the RLink with
a USB driver.
The USB driver should be installed before you plug the RLink. Unless you have specified otherwise, it
is installed along with Ride7. If the USB driver has not been installed, launch the program
RlinkUSBInstall.exe. For standard installations of Ride7, it is located in:

C:\Program Files\Raisonance\Ride\Driver\RLinkDrv\RLinkUSBInstall.exe
After running this program, when you plug an RLink in, Windows recognizes it automatically.

6.3 REva board
The REva demonstration board includes an RLink. The whole board can be powered by the USB
through the RLink. The target chip is placed on an interchangeable daughter board that can include
different targets. For Ride7, (and for Windows and the USB driver) there is no difference between
operating the REva and using an RLink with any other application board featuring the ICC or SWIM
connector.
For more information about the demo board itself (schemes, etc.), see the appropriate documentation.

- 23 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.4 Configuring RLink STM8
After selecting RLink STM8 as your debugging tool (see section “Selecting hardware debug tool”), click
on the Advanced Options button to open the RLink_STM8 options dialog box shown below:

1. It is critical to check that the Selected Target corresponds to your chip.
If not, you must go back to the Ride7 main screen and change the Device selection.

2. Select the memory regions that you want Ride to Erase and Program before debugging.
3. To debug your application, confirm that Debug Application is checked.

Uncheck the Debug Application option if you want to use RLink as a simple programmer,
e.g. if you want to run the application on the STM8 without debugging it.

4. Select if you want to Activate Read-On-The-Fly. This option will make debugging more
comfortable by updating the memory views during CPU execution.

5. The Read-On-The-Fly option, but also the “normal” debugging communication can create bus
access conflicts if your application makes heavy load on the bus. That can result in slow or
stalled debugging. To solve this you can select the Give bus access priority to debugger over
core option. But you must be aware that this might impair the real-time execution feature of the
debugger by slowing down the application's execution. So you should only activate this option if
you have slow or stalling debugger.

6.4.1 RLink STM8 Instant actions
This section of the RLink_STM8 options dialog box carries out the instant actions listed below without
leaving this dialog box. This is useful for testing connections and retrieving information from the RLink
and your ST7, as well as for programming the ST7 and its option bytes.

● Connect to RLink and read serial number is useful for checking that RLink is working and
properly connected and that the USB driver is correctly installed. It also allows you to read the
RLink serial number, which you will be asked for if you contact our support team.

● Erase target now! allows you to completely erase the target's Flash (writing 0x00), option
bytes and EEPROM (if your STM8 features any). This is the correct way to remove the read-
out protection from a protected device.

● Dump target FLASH to hex file reads the contents of the Flash and writes it in a file in hex
format whose name is derived from the current application's name with the extension .hex
(<application name>.hex).

● Write target FLASH now! programs the Flash with the current application's hex file generated
by the linker. Then, launches the execution in user mode.

- 24 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.4.2 Jumpers for RLink STM8 using ADP
If you are using a V3.0 RLink or earlier, which features a 24-point connector, you must use an adaptor
(ADP) for connecting to STM8 devices. These adaptors convert the 24-point RLink connector into a 4-
point SWIM connector. These ADPs contain jumpers that you may need to set, or not, depending on
your situation.
All versions of ADPs ST7-STM8 allow connection to STM8 devices.
Version 1.X can only connect to STM8 devices with a power voltage as low as 2.2V.
Version 2.x allows to connect to STM8 devices with a power as low as 1.6V.
All versions also allow to connect to ST7 devices.
These ADPs feature four jumpers:

• Jumper “SWIM” for selecting SWIM or ICC protocol. (select SWIM for STM8)
• Jumper “PW5V” for transferring the 5V power from RLink to the target STM8 board. Use this if

your board has no power and you want to power it from the RLink. !!! ONLY DO THIS IF YOUR
TARGET BOARD IS 5V-COMPLIANT !!!

• Jumper “Adapt” which should be used if your board's power supply is lower than 3V. This jumper
allows to reduce the value of the ADP's pull-up resistor on the SWIMDATA signal.

• Jumper “12MHz” is for ST7 only. Do not set it when connecting to STM8 devices.

6.4.3 Jumpers for STM8 REva board
If you are using a REva board, you must make sure that
the jumpers are set correctly on the RLink part of the
board.
To do this, click on View RLink jumpers configuration
for STM8. The following illustrations showing the STM8
configuration for the RLink jumpers are displayed:

Note: Should the pictures in this documentation and in Ride7 be different, please assume that those
shown in Ride7 are correct. If you purchased RLink as part of a STM8 kit (such as the REva board for
STM8), then the jumpers should already be correctly set. For this reason, you should only need to adjust
these jumpers if they were accidentally unplugged, or if you are using an RLink that was configured for
another protocol, such as ICC.

- 25 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.5 Configuring RLink ST7
After selecting RLink ST7 as your debugging tool (see section 6.1.Selecting hardware debug tool), click
on the Advanced Options button to open the RLink ST7 options dialog box shown below.

1. It is critical to check that the Selected Target corresponds to your chip.
If not, you must go back to the Ride7 main screen and change the Device selection.

2. Next, indicate the preferred reset method to use when establishing in-circuit communication with the
target ST7 by checking or unchecking the “Ignore Option Bytes” checkbox. See the ICC section of
your device Datasheet for more information about this.
If you do not know, just leave the default: If the first method fails, Ride7 will try the other, the only
drawback for you is that the reset will take a little more time (less than half a second more).
Be careful that the external clock is provided (either from RLink or another external source) if both
your device's default option bytes and current option bytes select the external clock.

3. To debug your application, confirm that Debug is checked.
Uncheck the Debug option if you want to use RLink as a simple programmer, e.g. if you want to try
the application on the ST7 without debugging it.

Note:
If the Debug option is checked, the application will be patched (to add code such as reset and trap
vectors for debugging) and is only executed if it is driven by Ride7 through RLink.
If the Debug option is unchecked, then launching the debug session will simply program the unpatched
code to your ST7 and start execution. This is useful when using RLink and you do not have the source
code.

- 26 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.5.1 Option bytes
Next, you need to configure how the ST7's option bytes are handled.

● Leave as is: the option bytes are not programmed. They retain their current values.
● Restore default: tells Ride7 to erase the option bytes and restore the default values before

loading the Flash and debugging. If you want to know what value will be loaded when selecting
this option, then click the Default button, and you will see the default values in the Value to
program section. These default values are NOT the factory settings. They are the values that
are best for debugging and they are not fit for production. (minimal protection, etc.)

● Program tells Ride7 to erase the option bytes prior to programming the Flash memory, and to
program the option bytes with the value that you have specified in the Value to program
section. The option bytes are programmed after the Flash memory has been programmed.

● Value to program: This is the value that will be written in the option bytes if the Program
option is selected. You can change the value by typing the value that you want in the Option
Byte 0 and the Option Byte 1 fields (refer to your device datasheet for the meanings of these
values), or by selecting Change value and configuring the options controlled by each option
byte in the Options dialog box (shown below).

Warning: Some option byte values such as those controlling read-out, debug and re-write
protection will prevent any further re-programming of your ST7. Be careful when setting the
option byte values and refer to your device Datasheet for complete descriptions of the option
byte values for your ST7.

The Options dialog box shows the meaning of each bit of the option bytes. This can help prevent
errors resulting from typing the wrong value to program to the option bytes. Click on the field on the
right to select option byte settings from a drop-down list of possible settings.
Finally, clicking Default restores the default value in the edit fields if you think that you might have
typed in an incorrect value.

Note: Restore default is the same as Program with the default value, but it's faster!

- 27 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.5.2 Instant actions

This section of the RLink_ST7 options dialog box carries out the instant actions listed below without
leaving this dialog box. This is useful for testing connections and retrieving information from the RLink
and your ST7, as well as for programming the ST7 and its option bytes.

● Connect to RLink and read serial number is useful for checking that RLink is working and
properly connected and that the USB driver is correctly installed. It also allows you to read the
RLink serial number, which you will be asked for if you contact our support team.

● Read Calibration values reads current values for calibration, address and frequencies. (for
ST7FOX devices only)

● Read target option bytes allows you to read the option bytes currently written in the chip. Use
this also to test the connections and power of the target ST7.

● Write target option bytes now! allows to program the option bytes without leaving the
configuration window. When programming them, Ride7 takes into account the settings in the
Option bytes options section of the dialog box (see the previous section). It will do nothing if
the "Leave as is" option is selected. It will erase and write the default value if the Restore
default option is selected, and it will program the value displayed in the edit fields if Program
is selected.

● Erase target now! allows you to completely erase the target's Flash (writing 0xFF), option
bytes (restoring the default value) and EEPROM (if your ST7 features any). This is the correct
way to remove the read-out protection from a protected device.

● Dump target FLASH to hex file reads the contents of the Flash and writes it in a file in hex
format whose name is derived from the current application's name with the extension .hex
(<application name>.hex).

● Write target FLASH now! programs the Flash with the current application's hex file generated
by the linker. Then, launches the execution in user mode. When using this instant action, the
code is not patched for debug, even if the Debug option is checked.

6.5.3 RC calibration
This setting applies only to the ST7 Fox family.
At each erase, calibration automatically starts.
Current values for calibration, address and frequencies can be read via the Instant actions menu.

6.5.4 Jumpers for RLink ST7 using an adapter
If you are using the version 3.0 of RLink or earlier, which feature a 24-point connector, you must use an
adaptor (ADP) to convert the 24-point RLink connector into a 10-point ICC connector to connect to ST7
devices. These ADPs contain jumpers that you may want to set, depending on your situation.

- 28 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

ADPs ICC-ST7 and ST7-STM8 all allow to connect to ST7 devices. Some of them also allow to
connect to STM8 devices. Depending on the versions, these ADPs feature up to four jumpers:

• Jumper “SWIM” for selecting SWIM or ICC protocol.
• Jumper “PW5V” for transferring the 5V power from RLink to the target ST7 board. Use this if

your board has no power and you want to power it from the RLink. !!! ONLY DO THIS IF YOUR
TARGET BOARD IS 5V-COMPLIANT !!!

• Jumper “Adapt” which is for STM8 and should not be set when connecting to ST7.
• Jumper “12MHz” for sending the 12MHz clock to the target ST7. Use it if your target ST7 board

does not feature a clock (crystal or oscillator) and you want RLink to provide one.

6.5.5 Jumpers for ST7 REva board
If you are using a REva board, you must make sure that the jumpers are set correctly on the RLink part
of the board. To do this, click on View RLink jumpers configuration for ST7. The following
illustrations showing the ST7 configuration for the RLink jumpers is displayed:

Note: If the pictures in this documentation and in Ride7 are different, please assume that those shown in
Ride7 are correct. If you purchased RLink as part of an ST7 kit (such as the REva board for ST7), then
the jumpers should already be correctly set. For this reason, you should only need to adjust these
jumpers if they were accidentally unplugged, or if you are using an RLink that was configured for another
protocol, such as JTAG.

- 29 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.5.6 Advanced breakpoints
The interface for operating the debugger is exactly the same as for the simulator. However, there is
one feature that is specific to the ST7 devices with a debug module: the advanced breakpoints.

Once the debug session has started, if your ST7 device features a debug module, click on Debug >
Advanced Commands > Advanced Breakpoints to open the Advanced breakpoints window which
allows you to select the break conditions and addresses. (If this option does not appear, then your
device probably does not have a debug module. You can check this on your device Datasheet.)

The advanced breakpoints configuration is discarded upon reset.

Note: If you use the debug module to set advanced breakpoints, the debugger cannot use them and
may not be able to set standard breakpoints (if the target ST7 has HDFlash or if the breakpoint is in
sector 0 of an XFlash device, then Ride7 cannot set the breakpoint). To let Ride7 use the debug module
for standard breakpoints again, you must go to the Advanced breakpoints window and disable them.

- 30 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.6 Hints and troubleshooting

6.6.1 Example projects
The examples in the Ride7 directory REva folder are configured for use with a REva evaluation board,
which includes an RLink. For standard ST7 installations they are found at:

C:\Program files\ Raisonance\Ride\Examples\ST7\REva.
For standard STM8 installations they are found at: C:\Program files\
Raisonance\Ride\Examples\STM8\REva.
These examples can be used with other demonstration and evaluation boards with a standard SWIM
or ICC connector and the RLink. These examples can be compiled using the C toolchain during the
evaluation period (30 days, no code size limitation) or with a purchased compiler license (Lite or
Enterprise). Some examples are too big to be compiled with the demo version. These particular
examples include a precompiled version of the application that you can download, run and debug, but
you will not be able to modify and recompile it.
Before using an example, look at it and make sure that the jumpers on the REva board are set
correctly (enables for the LEDs, buttons, SCI, EEPROM, etc.). Usually, there is some important
information in comments at the beginning of the main file (i.e. the file that contains the main function).

6.6.2 Testing USB driver, connections and power supplies
To test the USB driver installation and RLink operation, use Connect to RLink instant action. RLink
appears in Windows' device manager under the Jungo section if it is correctly recognized in Windows
XP, NT and later. It appears under the RLinkWinUSBClass section in Windows Vista and earlier.
To test the connections and power of the target board and STM8/ST7, use the Read option bytes
instant check. This operation requires RLink to connect to the target STM8/ST7, ensuring that it is
powered, correctly connected to RLink, and that the rest of the application board does not interfere with
the communication between RLink and the STM8/ST7 (see below).

6.6.3 Debug pins
The STM8 uses the RST and SWIMDATA pins. The ST7 uses the RST, ICCCLK and ICCDATA.
These pins communicate between the RLink and the target STM8/ST7. So you must ensure that the
rest of the system (i.e. the other components on the board) does not use them. This also means that
your application cannot use these pins if you plan to debug it with RLink.
These pins' addresses depend on the target STM8/ST7. Please refer to Chapter 6 Building an ICD-
compliant application board and your STM8/ST7 device Datasheet for more information.

6.6.4 Handling option bytes for ST7
Here are the suggested ways to handle the option bytes, depending on the state of your project:

● While you are still debugging the application, you will probably re-program the target ST7 quite
often, but the option bytes values will not change much. Since you are always using the same
device, there is no need to re-program the option bytes every time. In this case, program them
once using the Write target option bytes now! instant action, and then select the Leave as is
option for the debugging sessions.

● When you are in the pre-production phase (debugging is complete and you are programming
multiple ST7s), select Program, so as to program the option bytes for each ST7 device (and
uncheck the Debug option in the actions for debug session).

● Also, remember that if you protect the Flash memory against read-out (or write) with the option
bytes, then you will not be able to debug. So even if you already know that your final application
will be protected against read-out, you should not do so during the development phases of the
project when you still need to debug.

- 31 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.6.5 Handling option bytes for STM8
In STM8 devices, the option bytes are simply mapped in the memory space (see the device datasheet
from ST to know the addresses and contents of the option bytes in your particular STM8 derivative).
The option bytes are accessed along with the Flash during the programming phases.
To program them, your compile chain must generate some data at these addresses in the application
file. Then the option bytes are programmed whenever you program the application to Flash. See how it
is done in the STM8_OB.asm file in this example:
<RideInstallDirectory>\Examples\STM8\REva\STM8S208RB\Toggle\...
If you do not want to program them, just leave these addresses unreferenced in the application.
If you want to read them, just read the Flash out to a file using the Instant actions or RFlasher or
STM8_pgm.exe. The option bytes are dumped along with the Flash and are seen in the resulting file at
the corresponding addresses.

6.6.6 Command-line programming tool
In the Ride7 binaries directory (for standard installations C:\Program Files\Raisonance\Ride\Bin), you
find programs named ST7_pgm.exe and STM8_pgm.exe. These executable files erase and program
the STM8/ST7 connected to the RLink. Call one of them in a DOS prompt with no arguments in order
to see the help that explains the command line arguments.

6.6.7 Protected addresses
You will notice, in the Code view, that some values have a red square with a white dash next to them.
These are “protected addresses”. These values are never updated, and you cannot modify them. This
means that Ride7 never reads them because they are special peripheral registers that are modified
whenever they are read. Any access would interfere with the execution of the application.

6.6.8 Limitations of RLink compared to the emulators
● Debugging STM8/ST7 devices through SWIM/ICC uses 5 bytes of stack and some I/O pins

(SWIMDATA for STM8, ICCDATA and ICCCLK for ST7).
● It also uses about 195 bytes of Flash memory for ST7 devices with HDFlash, and ST7 devices with

XFlash that do not feature the advanced version of the ROM-monitor (like the ST7Lite0. See the
device datasheet).

6.6.8.1 ST7 monitor code
● Monitor code is loaded in the Flash along with the user application.
● It is loaded at the highest address where the application contains enough contiguous 0xFFs.

- 32 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

● The size of the monitor is 0xCC bytes.
● If the application does not contain enough contiguous blank bytes, then debug is not possible.

6.6.8.2 Watchdog and reset
● Activation of watchdog makes the monitor crash. You must disable watchdog when debugging.
● The RESET signal is controlled by the RLink during the whole debugging process. Therefore,

the RESET button on the target board (if there is one) will probably not work and might even
make the debugger crash if it is pressed. You should not use it.

● You can reset the CPU by using the RESET command in Ride7.

6.6.8.3 Limitations for ST7 XFlash targets without debug module (ST72F26x,ST7FLITE0/Sx)
(ST72F26x, ST7FLITE0x, ST7FLITESx):

● ICCCLK and ICCDATA lines communicate between the RLink and the target ST7. These lines
are reserved and should not be used by the application being debugged.

● 5 stack bytes are used for communication between the RLink and the target. These stack
bytes cannot be used by the application.

● A TRAP vector points to the dedicated RLink-loaded code that manages breakpoints. A
breakpoint is a TRAP instruction patched into the application code. For this reason, the TRAP
vector and TRAP instruction are reserved for RLink.

● During debugging, peripherals continue to run even when the application has stopped.
● It is not possible to set a breakpoint in sector 0. For this reason, sector 0 should be configured

to its smallest size (0.5Kb) with the option byte.
● Pressing Stop while debugging in Ride7 is the same as a reset, and returns the program

counter to the main function.
● Additional limitation for ST7FLITE0x and ST7FLITES2/5: 195 bytes in Flash memory are

reserved for code that manages communication between the RLink and the target ST7.
These bytes cannot be used by the application.
This code is loaded when the application is programmed to the ST7.
The programming algorithm places the code as high as possible in Flash memory.
This code never overwrites the interrupt vectors. If there is not enough space for it, Ride7
returns an error message indicating that the user cannot debug the application.

6.6.8.4 Limitations for ST7 XFlash targets with debug module (ST7FLITE1/2/3x)
(ST7FLITE1x, ST7FLITE2x, ST7FLITE3x):

● ICCCLK and ICCDATA lines communicate between the RLink and the target ST7. These lines
are reserved and should not be used by the application being debugged.

● 5 stack bytes are used for communication between the RLink and the target. These stack
bytes cannot be used by the application.

● A TRAP vector points to the dedicated RLink-loaded code that manages breakpoints. A
breakpoint is a TRAP instruction patched into the application code. For this reason, the TRAP
vector and TRAP instruction are reserved for RLink.

● During debugging, peripherals continue to run even when the application has stopped.
● It is possible to set up to 2 breakpoints on sector 0, or 1 advanced breakpoint.

6.6.8.5 Limitation for ST7 HDFlash targets
● 5 stack bytes are used for communication between the RLink and the target. These stack

bytes cannot be used by the application.
● 195 bytes in Flash memory are reserved for code that manages communication between

RLink and the target ST7.
These bytes cannot be used by the application.
This code is loaded when the application is programmed to the ST7.
The programming algorithm places the code as high as possible in Flash memory.
This code never overwrites the interrupt vectors. If there is not enough space for it, Ride7
returns an error message indicating that the user cannot debug the application.

- 33 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.6.9 Limitations for ST7 HDFlash targets without debug module
Flash breakpoints

● Breakpoints in Flash are made by adding TRAP instructions in the application code at compile
time. You can use the "Breakpoint" macro defined in st7lib_conf.h to do this easily.

● The trap interrupt cannot be used by the application when debugging.
● The trap ISR should be defined and do nothing, in order to avoid breakpoints doing a reset

when just running the application (not debugging).
● RAM breakpoints can be set and cleared normally.

Step
● Stepping needs dynamic breakpoints. Therefore, it does not work with HDFlash devices

without a debug module.
● Ride7 implements a half-simulated stepping feature called “virtual emulation”. This mode is

automatically activated whenever you request a step (at C or assembler level) while debugging
on an HDFlash target without a debug module. In this mode, Ride7 simulates the ST7 core just
as if you were debugging using pure software simulation. But it updates the real CPU data and
registers accordingly, and therefore the peripherals (GPIO, etc.) actually run on the real device,
making it possible to interact with the rest of the system.

● This simulation mode is NOT real-time, and disables the interrupts if they were enabled. After
that, when the program is run again using the GO command, the interrupts are re-enabled (if
needed), and program execution resumes in the real CPU, providing real-time emulation
again.

Code in RAM
● Executing a function in RAM is the best way to debug it.
● Look at the compile and link documentation for how to place code in RAM. In a future versions

of Ride7, we will add a simple syntax in the compiler to easily place a function in RAM memory.

Stop
The Stop command needs an interrupt enabled (depends on the target), and additional configuration:

Stop for 361 and 561
● The ei1 interrupt on PB5 is used.
● The monitor automatically enables ei1, but it lets the user application enable the interrupts.
● The application must enable the interrupts using RIM for STOP to work.
● If the application disables ei1 or changes PB5 configuration, STOP will not work.
● Beware of IO_Init function that disables it.
● We advise to place a breakpoint after peripheral init, which enables the break on PB5

again.
● ei1 should be kept at the highest IT level.
● The other ei1 interrupts can still be used, but the monitor will add 2 instructions before

entering the ISR (BTJF then JP).

Stop for 63B
● The external IT ITi is used.
● The user application has to use RIM for enabling interrupts and to enable the STOP.
● The user must plug a wire between ICCDATA and the signal associated with the enabled

IT.
● It must be one of the 4 falling-edge-sensitive signals (PA6, PA7, PB6, PB7).
● Debugging prevents the application from using the ITi, even with the 7 other signals

associated with this interrupt. Therefore, it is not possible to debug applications using ITi
with this monitor.

Stop for 321, 324, 521
● External IT ei2 is used for stopping the execution.

- 34 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

● The user application has to use RIM for enabling interrupts and STOP.
● The user application has to configure one of the pins associated with ei2 (PB0,1,2,3) to

generate IT on falling edge.
● The user must plug a wire between ICCDATA and one of the signal associated with the

enabled IT.
● It must also configure the signal as input with interrupt on falling edge.
● The selected IT cannot be used for any other purpose than debugging.
● The user can choose to disable the STOP feature, in order to use the 4 PB0,1,2,3 pins

and/or ei2 in his application. To do this, just don't plug the wire on ICCDATA.

- 35 -

Raisonance Tools for STM8/ST7 7. ICD-compliant application board

7. ICD-compliant application board
In-Circuit Debugging (ICD) and In-Circuit Programming (ICP) are applications of the SWIM or ICC
protocol developed by ST for STM8 and ST7 microcontrollers. With the necessary connection
hardware, these protocols allow you to read and write to your STM8/ST7's Flash memory, and control
the running of your application on your microcontroller.
These protocols are used by RLink and the other STM8/ST7 in-circuit debuggers and programmers.
To take advantage of SWIM/ICC, you must integrate a SWIM or ICC connector into your application
hardware when you start developing your application. To help you implement ICP and ICD in the
development of your application, this chapter provides a summary of points you should consider when
installing an ICD connector.

7.1 SWIM connector for STM8
To connect to your application board for ICP and ICD, you must install a 4-pin SWIM connector and
ensure the appropriate connections to your STM8.
This connector receives the SWIM cable and relays the signals required for ICP and ICD to your
STM8.
The table below describes the SWIM connector and its pins usage:

Connector pin
(and pin number)

STM8 pin (see pin number
on device datasheet)

Function

VDD_APPLI (1) VDD Device power supply

SWIMDATA (2) SWIMDATA SWIM Input/Output serial data pin

GND (3) GND Ground

SWIMRESET (4) RESET Device reset

7.1.1 SWIMDATA pin
This pin transfers data between the RLink and the target STM8 microcontroller.
As soon as the programmer’s SWIM connector is connected to the application board, the SWIMDATA
pin should not be used by other application devices, even if a SWIM session is not in progress. The
RLink and its ADP include 50 Ohms serial resistors that provide a limited protection. However, there is
no guarantee that this protection will be enough to prevent damage to occur in case of electrical
conflict.

7.1.2 SWIMRESET pin
This pin resets the target STM8 microcontroller from the host PC through the RLink.
During a SWIM session, you must ensure that the RLink controls the STM8’s RESET pin so that no
external reset is generated by the application board. This can lead to a conflict if the application reset
circuitry signal exceeds 5mA (push-pull output or pull-up resistor <1KΩ). To avoid such conflicts, a
Schottky diode can be used to isolate the application reset circuit.
You can place a capacitor on the RESET pin, but it should not be too large; if the rising time of the
reset signal is too long, RLink might think that the device is not connected or not operational and
programming or debugging is impossible. 0.1µF should be fine. Larger values should be avoided.

7.1.3 VDD_APPLI pin
This pin is used by tools with a power supply follower, such as RLink. This connection is needed by the
power supply follower to detect the supply voltage and power the RLink's I/Os accordingly.

- 36 -

Raisonance Tools for STM8/ST7 7. ICD-compliant application board

7.2 ICC connector for ST7
To connect to your application board for ICP and ICD, you must install a 10-pin, HE-10 type connector
(also called an ICC connector) and ensure the appropriate connections to your ST7.
This connector receives the ICC cable and relays the signals required for ICP and ICD to your ST7.
The table below describes the ICC connector and its pins usage:

Connector pin
(and pin number)

ST7 pin (see pin number
on device datasheet)

Function

GND (1, 3, 5, 10) GND Ground

VDD_APPLI (7) VDD Device power supply

ICCDATA (2) ICCDATA ICC input/output serial data pin

ICCCLK (4) ICCCLK ICC input serial clock pin

ICCRESET (6) RESET Device reset

ICCSEL/VPP (8) ICCSEL/VPP Programming voltage and ICC selection

ICCOSC (9) OSC1 or OSCIN Main clock input for external clocking (optional)

7.2.1 ICCDATA and ICCCLK pins
These pins transfer data between the RLink and the target microcontroller.
As soon as the programmer’s ICC connector is connected to the application board, the ICCDATA and
ICCCLK pins must not be used by other application devices, even if an ICC session is not in progress.
The RLink and its ADP include 50 Ω serial resistors that provide a limited protection. However, there is
no guarantee that this protection will be enough to prevent damage occurring in the case of electrical
conflict.
For an ST7 without an ICCSEL pin, during normal operation the ICCCLK pin must be pulled-up
internally or externally (10KΩ pull-up required in noisy environments). This is to avoid entering ICC
mode unintentionally during a reset.

7.2.2 ICCRESET pin
This pin resets the target microcontroller from the host PC through the RLink.
During an ICC session, you must ensure that the RLink controls the ST7’s RESET pin so that no
external reset is generated by the application board. This can lead to a conflict if the application reset
circuitry signal exceeds 5mA (push-pull output or pull-up resistor <1KΩ). To avoid such conflicts, a
Schottky diode can be used to isolate the application reset circuit.
You can place a capacitor on the RESET pin, but it should not be too large; if the rising time of the
reset signal is too long, RLink might think that the device is not connected or not operational, making it
impossible to program and debug. 0.1µF should be fine. Larger values should be avoided.

7.2.3 ICCSEL/VPP pin
This pin is used on certain ST7 derivatives to supply a 12V programming voltage and/or to enter ICC
(program) mode. The application should include a pull-down resistor not smaller than 10KΩ .

7.2.4 ICCOSC pin
This pin can be used for the RLink to provide an external clock to the target microcontroller.
If the clock is not provided by the application, or if the application clock source is not programmed in
the option byte then the ICCOSC pin of the ICC connector must be connected to the ST7’s OSC1 or
OSCIN pin.

- 37 -

Raisonance Tools for STM8/ST7 7. ICD-compliant application board

This connection allows you to start communication with your ST7 for in-circuit debugging and/or
programming using the Ignore Option bytes option. When doing so, your RLink provides a clock
source to initiate communication with the ST7.
The RLink provides a clock source at a frequency of 12MHz.
For ST7 devices with multi-oscillator capability, when the ICCOSC pin is connected, the OSC2 pin
should be grounded.

7.2.5 VDD_APPLI pin
This pin is used by tools with a power supply follower, such as RLink. This connection is needed by the
power supply follower to detect the supply voltage and power the RLink's I/Os accordingly.

- 38 -

Raisonance Tools for STM8/ST7 8. Raisonance solutions for STM8/ST7 upgrades

8. Raisonance solutions for STM8/ST7 upgrades

8.1 RKit-STM8-Lite versus RKit-STM8-Enterprise
The RKit-STM8 capabilities are determined by a software-based license and are independent of the
hardware that is used with them. Software licenses are node-locked licenses - specific to a computer.
However, a dongle-based option is available when ordering.

• The RKit-STM8-Enterprise software license allows access to all features.
• The RKit-STM8-Lite has a limited build size of 32 Kbytes of output code.

8.2 RKit and RLink options
RKit-STM8-Lite

• All supported STM8A/L/S sub-families
• Raisonance compiler toolchain
• GUI interface for compiler control
• Project manager
• Debug run control, breakpoints and all views
• Full programming GUI
• Support via forums, email with standard priority

RKit-STM8-Enterprise (All features of the “Lite”, plus...)
• All supported ST7
• Script-based controls (C, C++, JScript)
• Control of version management tools (CVS, ...)
• Automatic C formatter
• Calculator (standard & hex)
• Comment stripper
• Unix line converter
• Support via forums, email with high priority

RLink-STD
• Debugging – No code size limitation
• Programming – No code size limitation

RLink-PRO
• Debugging – No code size limitation
• Programming – No code size limitation

- 39 -

Raisonance Tools for STM8/ST7 9. Conformity

9. Conformity

ROHS Compliance (Restriction of Hazardous Substances)

IoTize products are certified to comply with the European Union RoHS Directive (2002/95/EC) which
restricts the use of six hazardous chemicals in its products for the protection of human health and the
environment.
The restricted substances are as follows: lead, mercury, cadmium, hexavalent chromium,
polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE).

CE Compliance (Conformité Européenne)

IoTize products are certified to comply with the European Union CE Directive.
In a domestic environment, the user is responsible for taking protective measures from possible radio
interference the products may cause.

FCC Compliance (Federal Communications Commission)

IoTize products are certified as Class A products in compliance with the American FCC requirements.
In a domestic environment, the user is responsible for taking protective measures from possible radio
interference the products may cause.

WEEE Compliance (The Waste Electrical & Electronic Equipment Directive)

IoTize disposes of its electrical equipment according to the WEEE Directive (2002/96/EC).
Upon request, KOLABS can recycle customer’s redundant products.
For more information on conformity and recycling, please visit the IoTize website www.iotize.com

- 40 -

http://www.keolabs.com/
http://www.keolabs.com/
http://www.keolabs.com/

Raisonance Tools for STM8/ST7 10. Glossary

10. Glossary
Term Description

ADC Analog Digital Converter

ADP RLink adaptor

CodeCompressor Post link code optimization tool

HDFlash High Density Flash

I/O Input/Output

ICC In-Circuit Communication

ICD In Circuit Debugging

ICP In Circuit Programming

RBuilder Application builder that allows users to configure device peripherals and out put the
required C code automatically for their applications. Code is based on libraries
provided by the manufacturer.

REva Raisonance evaluation platform – modular evaluation boards with main evaluation
board (motherboard) and daughter boards featuring different microcontrollers

RFlasher Raisonance Flasher: Programming interface for user-friendly flash programming

Ride7 Raisonance Integrated Development Environment

RLink Hardware tool for in-circuit debugging and programming of a target microcontroller
mounted on an application board. Supports interface via JTAG, ICC and SWIM
protocols.

SCI Serial Communication Interface

SWIM Serial Wire Interface Module

XFlash Extended Flash: Flash memory based on EEPROM technology

- 41 -

Raisonance Tools for STM8/ST7 11. Index

11. Index
Alphabetical Index
Add application code...13
Add code to project...16
Advanced breakpoints.......................................30
ARM upgrades..39
Breakpoints...20
Building a new project...9
CE...40
CodeCompressor..6
Compile Chain...6
Compliance...40
Configure peripherals..11
Configure RLink ST7..26
Configure RLink STM8.....................................24
Configure RLink for STM8.................................24
Conformity...40
Creating a new project..9
Debug controls..19
Debug options...19
Debug with simulator...17
Debugging with hardware tools.........................22
Directive..40
Enterprise license..6
Example projects...7
FCC...40
Generate project...13
ICC connector for ST7.......................................37
ICD-compliant application board.......................36
Install new Ride7/kit..8
Install Raisonance Tools for STM8/ST7..............7
Instant actions...28
Introduction...5

Jumpers for RLink ST7 using28
Jumpers for RLink STM8 using ADP.................25
Jumpers for ST7 REva board............................29
Jumpers for STM8 REva board.........................25
Launch the simulator...18
Lead..40
Main file...13
Option bytes..27
Raisonance C toolchain.......................................6
Raisonance tools for ARM...................................5
RBuilder..6
RBuilder ...10
RC calibration..28
REva board...23
RFlasher..6
Ride7...6
Ride7 and RKit-STM8 overview...........................6
RLink...6
RLink features...23
RLink STM8 Instant actions..............................24
RLink USB driver...23
ROHS..40
Selecting hardware debug tool..........................22
Simulator...6
ST7 libraries..7
STM8/ST7 derivatives and RKit-STM8..............17
STM8/ST7 simulator...17
Supported derivatives..7
SWIM connector for STM8................................36
Third party tools used with RKit-STM8................7
WEEE...40

- 42 -

Raisonance Tools for STM8/ST7 12. History

12. History

Date Modification

Jul 2008 Initial version

Jan 2009 Some file names updated.

Feb 2009 STM8 information added. (only ST7 before)

Jan 2010 Corrected some references to menu entries.
Cleaned up some pictures.

Feb 2010 Added description of new RLink STM8 options.

Jun 2011 Added description of new registration process.

06 Nov 2012 Put in new template

02 Apr 2013 Modified sections 1.4, 2.1, 3.2, 3.3, 8.1, 8.2.

- 43 -

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment
on the part of the manufacturer. The software described in this document is provided under license and
may only be used or copied in accordance with the terms of the agreement. It is illegal to copy the
software onto any medium, except as specifically allowed in the licence or non-disclosure agreement.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and retrieval systems, for any
purpose other than the purchaser’s personal use, without prior written permission.

Every effort has been made to ensure the accuracy of this manual and to give appropriate credit to
persons, companies and trademarks referenced herein.

This manual exists in electronic form (pdf) only.

Please check any printed version against the .pdf installed on the computer in the installation directory of
the latest version of the software, for the most up-to-date version.

The examples of code used in this document are for illustration purposes only and accuracy is not
guaranteed. Please check the code before use.

Copyright © IoTize 2017 All rights reserved

	1. Introduction
	1.1 Purpose of this manual
	1.2 Scope of this manual
	1.3 Additional help or information
	1.4 Raisonance brand microcontroller application development tools

	2. Ride7 and RKit-STM8 overview
	2.1 RKit-STM8
	2.2 Third party tools used in conjunction with RKit-STM8
	2.3 Supported derivatives
	2.4 Installing Raisonance Tools for STM8/ST7
	2.5 Example projects

	3. Register the Raisonance tools for STM8/ST7
	3.1 Install and activate the new software
	3.2 Register using a serial key
	3.3 Register using a dongle

	4. Building a new project
	4.1 Creating a new project
	4.2 Creating a STM8 project
	4.2.1 Creating the application

	4.3 Creating a ST7 project
	4.3.1 Creating the settings for the new application
	4.3.2 RBuilder start-up
	4.3.3 Configuring the peripherals from RBuilder
	4.3.4 Generating your project
	4.3.5 Adding your application code
	4.3.6 Main file

	4.4 Adding your code to the project

	5. Debugging with simulator
	5.1 About the STM8/ST7 simulator
	5.2 STM8/ST7 derivatives supported by RKit-STM8
	5.3 Peripherals and main file used in example project
	5.4 Launch the simulator
	5.5 Debug options
	5.6 Debug controls
	5.7 Peripheral status view
	5.8 Breakpoints
	5.8.1 Code view
	5.8.2 Source view

	6. Debugging with hardware tools
	6.1 Selecting hardware debug tool
	6.2 RLink programming (ICP) and debugging (ICD) features
	6.2.1 RLink USB driver

	6.3 REva board
	6.4 Configuring RLink STM8
	6.4.1 RLink STM8 Instant actions
	6.4.2 Jumpers for RLink STM8 using ADP
	6.4.3 Jumpers for STM8 REva board

	6.5 Configuring RLink ST7
	6.5.1 Option bytes
	6.5.2 Instant actions
	6.5.3 RC calibration
	6.5.4 Jumpers for RLink ST7 using an adapter
	6.5.5 Jumpers for ST7 REva board
	6.5.6 Advanced breakpoints

	6.6 Hints and troubleshooting
	6.6.1 Example projects
	6.6.2 Testing USB driver, connections and power supplies
	6.6.3 Debug pins
	6.6.4 Handling option bytes for ST7
	6.6.5 Handling option bytes for STM8
	6.6.6 Command-line programming tool
	6.6.7 Protected addresses
	6.6.8 Limitations of RLink compared to the emulators
	6.6.8.1 ST7 monitor code
	6.6.8.2 Watchdog and reset
	6.6.8.3 Limitations for ST7 XFlash targets without debug module (ST72F26x,ST7FLITE0/Sx)
	6.6.8.4 Limitations for ST7 XFlash targets with debug module (ST7FLITE1/2/3x)
	6.6.8.5 Limitation for ST7 HDFlash targets

	6.6.9 Limitations for ST7 HDFlash targets without debug module

	7. ICD-compliant application board
	7.1 SWIM connector for STM8
	7.1.1 SWIMDATA pin
	7.1.2 SWIMRESET pin
	7.1.3 VDD_APPLI pin

	7.2 ICC connector for ST7
	7.2.1 ICCDATA and ICCCLK pins
	7.2.2 ICCRESET pin
	7.2.3 ICCSEL/VPP pin
	7.2.4 ICCOSC pin
	7.2.5 VDD_APPLI pin

	8. Raisonance solutions for STM8/ST7 upgrades
	8.1 RKit-STM8-Lite versus RKit-STM8-Enterprise
	8.2 RKit and RLink options

	9. Conformity
	10. Glossary
	11. Index
	12. History

