Raisonance Tools
STM8/ST7

Getting Started

an loTize brand

Document version
24 March 2017

P RAISONANCE

Raisonance Tools for STM8/ST7

Contents
R (o 15 o £ 5
1.1 PUrpose Of thiS MaNUAL..........oouiiiiii ettt e e e e b e e eeeeaeeaees 5
1.2 Scope Of thiS MANUAL..........ouuiiiiiiiii et e e e e e e e e e e e e e e e 5
1.3 Additional help or INFOrMAatIoN............ueiiii e 5
1.4 Raisonance brand microcontroller application development tools..............cccooovviiiiiiiii s 5
2. Ride7 and RKIt-STM8 OVEIVIEW...........uuuuieiieiiieiiiiiieieieieeeeeeeeeeeeeeaeeeseesenesensssnnsnnssnnssnnsnnnnnnnns 6
2 I S 11V OO PRRRR 6
2.2 Third party tools used in conjunction with RKit-STMBS..............ccoiiiiiiiii e 7
2.3 SUPPOIEA EIMVALIVES.eeeiii ittt e e e bt e e e e et r e e e e e e e e e e e aaaaaaeaens 7
2.4 Installing Raisonance ToOIS fOr STIMB/ST7ccoiiiiiiiie ettt e e st ee e s seneeenenees 7
2.5 EXAMPIE PrOJECES.eeeiiii ittt ettt e e e e e e e e e e e e e e e e e e e aaaaaaaeas 7
3. Register the Raisonance tools for STMB8/ST7uuu e 8
3.1 Install and activate the NeW SOfIWAre............ooo i 8
3.2 Register USING @ SEIAI K@Ycoi it 8
BTG B S {=To 153 (=Y I3 o = e [o] T | PP 8
4. BUIldING @ NEW PrOJECT.ttt e e e e e e e et e e e e e e e e eeaasaeeeaennns 9
4.1 Creating @ NEW PrOJECE.uuiiiiiiiiie et e e e e e e e e e e e e e e a e e e eeeeeaaaaeeeeesaaassaaneaeaaeenes 9
4.2 Creating @ STMB8 PrOJECL........cii ittt e e ettt e e e e s a bt e e e e s abbeeeeeeaanbeeeeeennenes 9
4.2.1 Creating the appliCatiON...........ocuiiiiii e e e s aas 9
4.3 Creating @ ST7 PrOJECL....co ittt et e e e sttt e e e s e e e e e e e e 10
4.3.1 Creating the settings for the new application..............ccooiiii 10
G B o] = T 1o = g = 1 T o J USSP 10
4.3.3 Configuring the peripherals from RBUIIEr.............occuiiiiiii e 11
N A T =Y =Yg To Yo 10 [l o] o)1= Yo F 13
4.3.5 Adding your appliCation COUE.........uiuuiiiiiiiiiiiie et et e e e e e e e e e e eeeas 13
4.3.8 MAIN FIlE.....eee ettt ettt a e a e e e bt e e e en b e e e e nben e e e e e e e e e e aanne 13
4.4 Adding your code t0 the PrOJECL........coo i e e e e aaas 16
5. Debugging With SIMUIAtOT..........coii e e e eeeees 17
5.1 About the STMB/STT7 SIMUIALOT......ccciiiiiiiiie ittt e e 17
5.2 STM8/ST7 derivatives supported by RKit-STMS8...........ooiiiii e 17

RAISONANCE -2-

Raisonance Tools for STM8/ST7

5.3 Peripherals and main file used in example Project..........cccooouiiiiiiiiiiiie e 17
5.4 Launch the SIMUIATON.......... ettt e e e et e e e e e eeeena e eeeas 18
LRI D= o T8 Te [o] o] 110] o 1= TP 19
5.6 DEDUG CONTIOIS.eeiie ittt e bt e e e e b e e e e e e b be e e e e e snbee e e e e e nneee s 19
5.7 Peripheral StatUS VIBW........ccooiiiiieieee ettt e e e e e e e e e e et a e e e e e e aaaaaeeeaaaaaees 19
RS I =] (= 1 (oo | - T PP RPP PRI 20
5.8.1 COUE VIBW... .ttt ettt ettt e e e e ettt e e e e e sttt e e e e anstaeeeeesassteeeeeeastbeeeeeeannraeeeeeeeeeeees 20
TS 2 1o 18] (oY 1= SN 21
6. Debugging with hardware tOO0IS.............couii i 22
6.1 Selecting hardware debug tO0l..............coiiiiiii e 22
6.2 RLink programming (ICP) and debugging (ICD) features...........occoviiiiiiiiii 23
6.2.1 RLINK USB AIVET ...ttt ettt e e e ettt e e e s eatt e e e e e e sstaeeeeeesnsteeeeeeeeeessnnnnnne 23
LR T V= T o To - 1 o SO 23
6.4 Configuring RLINK STMB...........uiiiiiiiiiiiiie ettt e st e e e s st e e e e s stteeeeessantaeeeeeessaseeeeeaansnnnnns 24
6.4.1 RLINK STM8 INStaNt @CHONS.........cei it e e e e e e e e e s s s eeeerrna s 24
6.4.2 Jumpers for RLINK STM8 USING ADP.........oiiiiiiiiii e 25
6.4.3 Jumpers for STM8 REVA bOard...............ouuiiiiiiiiiiicc e 25
6.5 ConfigUING RLINK ST7 ..ottt e e et e e e e s sb b e e e e e e abbeeeeeeaaneennes 26
LTSI IO o1 0] o T)7 (Y PP PRR 27
ORI [013 =T | = Tox 11 1 N 28
OIS TRC N O o= 1 o] = (o T o S 28
6.5.4 Jumpers for RLINk ST7 using an adapter............oooooiiiiiiiiiiieeee e 28
6.5.5 Jumpers for ST7 REVA DOAId. ..o e 29
6.5.6 Advanced breakpOiNtS..........u...eiiiii e aaaa 30
6.6 Hints and troubleShOOtiNg...........ueeiiii e 31
6.6.1 EXaMPIE PrOJECES.ttt e e e e e e e e e e e e e e e e eeaaaaas 31
6.6.2 Testing USB driver, connections and power SUPPLIES.ccoviiuiiiiiiiiiiiiiee e 31
5.6.3 DEDUG PINS....eiiiiii ettt e et e b eees 31
6.6.4 Handling option ByIES fOr ST7....uuumiiiiiieie e 31
6.6.5 Handling option bytes for STIMB.........co i 32
6.6.6 Command-line programming t00]..........c.uuiiiiiiiiiiiie e 32
oI A o (o) (=To1 (=T BT [| =TT T SO 32
6.6.8 Limitations of RLink compared to the emulators................uieiiiiiiiii e 32
6.6.9 Limitations for ST7 HDFlash targets without debug module................ccccvvveviiiiiiiiiiiiiieeee, 34
7. ICD-compliant application board..............coooor i 36
7.1 SWIM conneCOr fOr STIMB.......coiiiiiiiiiiee et e e e e e e e aeanne 36
7. 1.1 SWIMDATA PIN.ceiiiieeiiiiieie ettt e e e et e e e e et e e e e e e abt e e e e e s easbaeeaeeeasbaeaaeaeeaaaeeaeaaaaaaaaaaaes 36

RAISONANCE -3-

Raisonance Tools for STM8/ST7

712 SWIMRESET PNttt et e ettt e e et e e e et e e e et e e e etaeeeeeaaeeeeaaeeeeeennssssnees 36

7.1 .3 VDD _APPLI PIN...ceeiiiee ettt et e e et e e e e e e e e e anraraes 36

4V (1 O oo a1 o T=Tex (o) i (o) S I AP PPPRPPPPPI 37

7.2.1 ICCDATA and ICCCLK PINS...ceeeiiiiieiiee ettt etieaiee e esee st e tee e e seeesmeeesneeeaesanneeeaeeanneeeas 37

7.2, 2 ICCRESET PUNuutiiiiiiiieiitiie ettt e et e et e e e st e e et te e e staeeeasseeeasaeeeanseeeensaeeeanseeeennnnnees 37

T2 3 ICCSELINVPP PNttt e et e e e et e e et e e e eaae e e eenes 37

AV 10010 S O o] o TSRS R PSPPI 37

7.2.5 VDD _APPLIDIN......oveeeeeeeeeeeeeeeeee e ee s n et en s n e en e, 38

8. Raisonance solutions for STM8/ST7 upgrades............uueeeiiiiiiiiiiiiiieeeee e 39
8.1 RKit-STM8-Lite versus RKit-STMB8-ENterprise.........ccccuvvmriiiiiiiiiei e 39

8.2 RKit and RLINK OPtIONS.ce ittt e e e e e e e e e e e e et e e e e e e e e ennneaeeas 39

9. CoNfOrMIty....ccoeeeee 40
T0. GlOSSAIY...coi ittt e e e e e ettt et e e e e e e e e e et e e e e e e e e e e e aaaeaaaeeaes 41
IR T L= SO RPSRN 42
L2 151 (] 2P UUPPPRPPPPPPP 43

RAISONANCE -4-

Raisonance Tools for STM8/ST7 1. Introduction

1. Introduction

Ride7 is the Raisonance brand integrated development environment (IDE), designed for the
development of ST7 and STM8 projects from beginning to end.

The RKit-STM8 plug-in for Ride7 provides the tools necessary to build ST7 and STM8-based projects:
« Compile chain (Assembler, C compiler and linker) for building applications.
- Software simulator for validating applications.

« Hardware debugger for debugging with an RLink and associated platforms (Open4, EvoPrimer,
REva).

« RFlasher GUI and command-line interfaces for programming the Flash of ST7/STM8 devices
through RLink during production.

« (ST7 only) RBuilder wizard to help users build their applications from scratch with minimum
knowledge of the ST7 architecture and peripherals. This builder takes users through peripheral
configuration and generates the necessary code in a start-up project.

1.1 Purpose of this manual
This guide should be used by anyone who is interested in building ST7/STM8 projects using Ride7.

1.2 Scope of this manual

It is assumed that the reader already has experience with at least one programming language, such as
C, C++, JScript, VBScript or Python. This guide does not describe the basics of procedural
programming such as functions, conditional branching and looping.

1.3 Additional help or information

If you want additional help or information, if you find any errors or omissions, or if you have suggestions
for improving this manual, go to the loTize site for Raisonance microcontroller development tools
www.raisonance.com, or contact the microcontroller support team.

Microcontroller website: www.raisonance.com

Support extranet site: support.raisonance.com (software updates, registration, bugs database, etc.)
Support Forum: forum.raisonance.com

Support Email: support@raisonance.com

1.4 Raisonance brand microcontroller application development tools
February 1, 2017, Raisonance became the brand under which the company loTize sells its
microcontroller hardware and software application development tools.

All Raisonance branded products regardless of their date of purchase or distribution are licensed to
users, supported and maintained by loTize in accordance with the companies' standard licensing
maintenance and support agreements for its microcontroller application development tools. For
information about these standard agreements, go to:

Support and Maintenance Agreement: http://www.raisonance.com/warranty.html
End User License Agreement: http://www.raisonance.com/software-license.htmi

RAISONANCE -5-

http://www.raisonance.com/software-license.html
http://www.raisonance.com/warranty.html
mailto:support@raisonance.com
http://forum.raisonance.com/index.php
http://support-raisonance.com/
http://www.raisonance.com/

Raisonance Tools for STM8/ST7 2. Ride7 and RKit-STM8 overview

2. Ride7 and RKit-STM8 overview

RKit-STM8 defines the software and hardware tools for creating, compiling and debugging
applications. For a full range of STM8 and ST7 microcontrollers.
The following table shows the set of tools that compose the RKit-STM8:

Integrated :
development Ride7 RFlasher?
environment

L RKit-STM8

RBuilder (ST7) Library

Examples (sources)

Software C toolchain
development Assembler MASTMS SIM-STM8
tools Compiler RCSTM8 RLink driver
Linker RLSTM8
L CodeCompressor

Application hardware RLink hardware
Hardware (ICC, SWIM interfaces)

2.1 RKit-STM8

There are three versions of the RKit-STM8 (see Section 8 for details).

« Basic license includes programming and debugging of STM8/ST7 with no limitations.
Compiler up to 2KB code. Activated using RLink/REva/Open4/EvoPrimer.

« Lite license includes programming and debugging of STM8/ST7 with no limitations.
Compiler up to 32KB code. Activated using Serial Key, Dongle.

- Enterprise license includes programming, debugging and compiling of STM8/ST7 with no
limitations. Activated using Serial Key, Dongle.

RKit-STM8 comes supplied with a number of ST7/STM8-specific tools from Raisonance:

« Ride7: Integrated development environment which is the interface for all the other tools.
Provides an editor, a project manager (no need for a Makefile) and a debug user interface that
can be used either with the simulator or with most available hardware-debugging tools. It can be
used by several microcontroller families, including ST7/STM8, ARM and uPSD.

« Compile Chain: Raisonance C toolchain, composed of C Compiler, Assembler and Linker which
allows you to write applications in C and/or assembler.

« Simulator: Simulates core (including the entire memory space) and most peripherals. Complex
peripherals (USB, CAN) and some less common peripherals are not simulated.

« CodeCompressor: A post link optimization tool that can reduce code size. It accepts as input
any executable code, whether from assembler, C or any other source (libraries...).

- RBuilder: A GUI that configures the ST7 peripherals used by the application, and generates the
corresponding source code (in C) for the peripherals, using the ST firmware library.

« RFlasher7: A graphical user interface for Flash programming.

» RLink support: Ride7 can communicate with the RLink, which is a USB hardware dongle that
allows the user to program the ST7/STM8 on an application board and debug the application
while it is running on the ST7/STM8. It uses the ICC or SWIM protocol. For more information
refer to chapter “Debugging with hardware tools”.

Each tool mentioned above has a dedicated user manual (please refer to the appropriate manual for
more details) apart from Ride7, the simulator and RLink.

RAISONANCE -6-

Raisonance Tools for STM8/ST7

2. Ride7 and RKit-STM8 overview

2.2 Third party tools used in conjunction with RKit-STM8

RBuilder is a 100% Raisonance product. However it uses the ST7 libraries for most of the code it
generates. This implies that as the ST library evolves, so will the code generated by RBuilder (starting
from the same set of options). See http://www.st.com/

2.3 Supported derivatives

RKit-STM8 supports most of the existing STM8 and ST7 (those with ICC not ISP) derivatives to various
degrees. An up-to-date list of supported derivatives and software simulation limitations can be seen in
Ride7 when creating a new ST7/STM8 project (Project | New project): Browsing through the list of
available devices displays some detailed characteristics in the “description field”.

2.4 Installing Raisonance Tools for STM8/ST7

When installing Ride7 and RKit-STM8, make sure you have the latest software version from the
Raisonance website: http://www.raisonance.com/download/

2.5 Example projects

RKit-STM8 contains example projects written in C or assembler that are ready to run. Each example is
described in the comments in the application's source files.

To open a project, for example Towers:
1. Click on Project > Open Project in Ride7.

2. Navigate to the Ride installation directory, then in
“Examples\STM8\C\Towers”.

3. Click on Towers.rprj and Open.

i Fle Edit

Projeckt

i (2 I Dk

A | 1?1 Show

& Ride7

Wiew

Project | Debug Scripts Options Help

[% Mew Project

E=]

Cpen Project

Close Project

The Project example file, Towers opens. In this example project, you can modify the debug values and

then build to view the result.

Ride7 - TOWERS.C
! Fle Edt Wiew Project Debug Scripts

Fraject
2 | (7] Show
= ‘7 Project ‘Towers'

Glabals

Towers Local Settings

Options Window Help
H2O0OHW AR X o ESIA R R
2x

= Info

= Directories
Include Directories
Cutput Directory
Listing Directory $tApplicationDir)
Library Dirsctories $IRKELIBNST?

=/ Advanced 5T7/5TMS options

= Processor

Device

$(RKitInC);${RKtInC)|5T7
$(ApplicationDir)

ST7LITE39

= Build development tools

= application Options Al

i
i

void mainivoid)
B{
int i

/4 8tacks initialization

forii = 0; i < SIZE; i++)

E {

(BTZE - i):
// Central coluwn does not cor
// Right column does not conte

Poshrray[0] [i] = // Left column contair
Posirray[1] [i] =
Posirray[2Z] [1] = O;

i

printf("\nNow running Hanoi towsrs algorithm");
/¢ First we initialize the stack on the left (0) maste
[#ifndef NOFRINT
DrawPosition();
#endif
/4 wove all 4 disks from left(0) to righe(z)
ComplexMove (2, 0, SIZE); // wowe the SIZE disks from tk
princf("inMove is done !");
while (1) :
i

< >

HEEER S S
TOWERS.C 4 b X Documentation 2 x
B |- Ride? Documentation ~
® =-[77 Ride7 for ST7/STME 1
E { A =] Working with Ride?
putchar (' '): B & RideT IDE overview
Repeat('=', 2 & SIZE + 1): & pownloading and instaling Ride?

Ready

Build Log

0s,010ms, 455

I~

ClEX

(& Getting suppart
(& Getting started with Ride7 for 5T
& Creating projects
& Editing
/& Editor shortcut commands
& adding items to projects
(& Setting project options
(& Building projects
& Debugaing projects
=7 ST7/STME tocls
= Compiler
T Assembler
7 Linker
= CodeCompressor
a ST7{5TM8 hardware
=77 REva board
) User guide For REva motherbe
7 User guide for ST7 and STHE-
) Quick start with REva for 5T7:
T Quick start with REva for 5T7;
2 Quick start with REva for 5T7.
) Quick start with REva for 5T7:—
T Quick start with REva for 5T71
2 Quick start with URLink Primer
"% REva motherboard v1.0 scher
= REva motherboard v2.0 scher
77 REva motherboard v2.10 scht
"% REva motherboard v3.3 scher
= uRLink Primer v1.1 Schematice
=] External resaurces
) ST7 family programming manual
) 5TMS Family programming manual
=] Datasheets
=7 sTMe
) STMEAFxLox.pof
=} STILITE
) STRLITEUSx, pdf
= STALITEUx pof
=T STRITEN. A 8
| >

118:1 HUM NS

RAISONANCE

http://www.raisonance.com/download/

Raisonance Tools for STM8/ST7 3. Register the Raisonance tools for STM8/ST7

3. Register the Raisonance tools for STM8/ST7

The new Ride7 and RKit-STM8 must be registered to operate correctly. Registration requires a
Raisonance software product license that is under a valid support contract (a standard support contract
expires one year after the date of purchase).

To activate the software you must register your RKit-STM8 using your RKit-STM8 license (Serial Key or
Dongle).

Unregistered software functions for a 30-day evaluation period with full features of the Enterprise
version. After 30 days the software can no longer be used. If this occurs, contact
info@raisonance.com.

3.1 Install and activate the new software

Perform these steps to install your new software:
1. Remove old versions of Ride7 and RKits.

2. Install the new Ride7 software, then the RKit-STM8 software, then validate its operation (test
compilation, connection to RLink and to target CPU, etc.).

3. Launch Ride7 and if the Serialization Choice popup does not appear, select Help > License.
Activate your software by providing one of the following:

a. Software serial key (purchasers of RKit-xxx-Enterprise or RKit-xxx-Lite tool sets).
b. Hardware dongle (purchasers of RKit-xxx-Enterprise or RKit-xxx-Lite tool sets).
c. RLink serial number (purchasers of RLink, REva, Open4 EvoPrimer).

4. Register the software by selecting the menu item Help > License...

Note: During the registration process, you will be notified if your product's support contract has expired.
This natification includes information about how to renew your tool's support contract. If necessary users
can always activate versions of the STM8 software that were released during their one-year support and
maintenance contract for that product.

3.2 Register using a serial key

Launch Ride7

Select Help > License...

Select Serial Key Activation, click on Next
Paste the your Serial Key in the provided field
Click on Next

Click on Get Activation code online

o0k wh -~

3.3 Register using a dongle
1. Launch Ride7
2. Connect your RLink, REva, EvoPrimer, Open4 or USB dongle to a USB port on the PC
3. Select Help > License...
4. Dongle activation for USB dongles, click on Next
Ride detects your hardware and reads its serial number.
5. Click on Get Activation code online

These registration procedures are also detailed on www.support.raisonance.com.

RAISONANCE -8-

Raisonance Tools for STM8/ST7 4. Building a new project

4. Building a new project

4.1 Creating a new pl'Oject Project | Debug Scripts Options Help
1. Click on the Project tab in the Ride7 menu. | 5 Mew Project
2. Inthe drop down menu, click on New Project. & Open Project

Close Project

4.2 Creating a STM8 project Save Project

4.2.1 Creating the application

To create the settings, follow the order below:
1. Select the Type of application to be built.
2. Select the type of Processor e.g. STM8L051F3.
3. Create a Name for the project e.g. Application0
4. Select a directory Location e.g. C:\Program Files\Raisonance\ride\examples\
5. Click on Finish to generate your application. Your application project is now created.

New application
Select the tvpe and location For vour new application, D
Type: Mew application to be buil v
Processor: Description:
+-7 ST7LITE A || STME ultra low power S-bit MCU
-7 5TMEA Flash: 8K
= ~ RAM: 1K
£ STMBA-CAN EEPRCM: 256E
= RTC
] timers
& USART
@ STMBLOSZRE 15ng
s STMBL101FZ ADC
@ STMEL101G2 DAC
& STMBL101F3
#i 5TMBL101G3 % | Datashest
Mame: Applicationd
Location: | C:\Program Files\Raisonance\Ride\Examples), E
@ Create a new project
Firish l [Cancel

RAISONANCE -9-

Raisonance Tools for STM8/ST7 4. Building a new project

4.3 Creating a ST7 project

4.3.1 Creating the settings for the new application

To create the settings, follow the order below:
1. Select the Type of application to be built.
Select the type of Processor e.g. ST72521R9.
Create a Name for the project e.g. Application0
Select a directory Location e.g. C:\Program Files\Raisonance\ride\examples\
Tick Launch RBuilder to generate source files.
Select the radio button Create a new project.
Press Finish.

No o~ oDN

Mew application

Select the type and location For your new application. m
_ e e e e e e e e e e e
1 Type Mew application to be buil w _!
Processor; Description:
& 5T7236136 # || &-bit MCU with nested interrupts
% STF2361ART Flash_: 60K HDFlash at 0x1000
10-bit ADC
‘% sTrzaelky 5 Timers
& ST7236117 SPI
ST
&8 ST723614RS T
& ST72361K CAM
% 5T7236119 Limited ICC debugaing

& STIPEzIRG .
W _I Datashest

&8 ST7P57 1M b
1 Mame Applicationd 1
e T T T T T o o - — -
Location: | Ci\Program Fileshraisonancelridelexamplest, E

@ Create a new project I

—— ——

F
1 Finish 1 Cancel

4.3.2 RBuilder start-up

RBuilder is an application builder based on the STM8/ST7 software library.
With RBuilder you can:

e Configure a project.

e Generate a project skeleton containing all the necessary code.

e Add your own code.

e Execute the application.

When the project settings have been set and validated with Finish, the following RBuilder start-up
screen appears:

RAISONANCE -10-

Raisonance Tools for STM8/ST7

4. Building a new project

Eichier Actions Aide

= RBuilder - Application0 [User-Screen]

| Select here the peripheral to configure

1

M Core: ST725Z1RY ~
—3 Memory
< Peripherals

¥ AD Converter

&) PWM Auto Reload T
& 16 bit Timers
& Main Clock Contral

Options for the current Peripheral/File COption @
C : 0 []

<2

10s

Ready

o 5CI
SPI
g i OConFlgure and Use [0
' Watchdog ~ Check this option to use the 103, Checking this option will make the other option to be displayed.
< > If this option is not checked, you will not be able to configure or use 10s.
[Laontents [Source files]
urce Files
2 b ApplicationOMain. c
by vector_521.c [E] senerate 10 Sample Code
b ADC.c = 5
< » Tt
© -
= @ @-' B[|imi @ @ [|- j
A
Check this option if you want RBuilder to generate an example of source code using the |0s. The
code will be inserted in the main function. This is useful to see how the ST7 library must be used.
To make this example working with REva (whatever the daugther board), you need to set the
« enabling » jumpers (blue on the picture below) for the LEDs and also for INPUTs (red). Then, if
you change the position of the DIP-switch (or if you push a button), the LEDs lighting will change
%] 1 Intraductian accordingly.
E] 2 Ovenview ST7 Sc Note: depending on the microcantroller, two pins of the ouput port could be reserved for ICC
[E] 2 Getting (debugging/programming port)
Started with RBuilder will automatically reserve these pins {and the LEDs will not react when modifying the
Tools input)
[E] 4 Library
Structure
E] 5 Example The following ports can be configured by RBuilder
EE R How tn nes tha ¥ 1%
184,9 % 262,8 mm < > = « PORTA « PORTE
W4 »| M}, FOF_ST7 }PDF_LIB | 11 « PORTB « PORTF v

The screen is divided into 5 different zones:

Zone 1 displays the peripherals associated with the microcontroller you are using. This view is
called the project tree. To use and configure a peripheral, select it in the tree and the options
associated with the selected peripheral are displayed in Zone 4.

Zone 2 shows you which file will be added to your project. This list changes while you are
adding/removing peripherals to your project.

Zone 3 displays the datasheet of your microcontroller and the ST7 software library manual.
Zone 4 displays the options related to the selected peripheral. This view is called the Option
View.

Zone 5 displays the online help which guides you through the configuration of your project.

4.3.3 Configuring the peripherals from RBuilder

Once you are in RBuilder, you can configure the peripherals for your project.
Some peripherals, like the I/O ports, offer the option to generate sample code. If you check this option,
sample code is placed in the main function.

Example 1 Port A: 1/O ports
This example shows how to use the basic library functions related to the associated peripheral(s).

1.

w

RAISONANCE

To add I/O support to your project, click on the 1/0O peripheral on the left (in the project tree), as
shown in the screen shot below. The peripheral will be unblocked and the ‘no entry’ sign
disappears.

Tick the Option check box of each peripheral you would like to add.

In the example below, tick the check box Configure and Use 10

Then click on Options for the current Peripheral/File view.

-11 -

Raisonance Tools for STM8/ST7 4. Building a new project

5. The available options for the peripheral appear and, for I/Os, the list of available ports is added
in the project tree. If no port is selected, only one option is available for I/Os. However, when a
specific port is selected in the project tree, more options are displayed.

= RBuilder - Application0 [User-Screen]

File Actions Help

Select here the peripheral to configure

[

1

6. Click on Port A to show the definable settings. Each pin of the PORT is easily configured using
a combo box which lets you specify if the pin is either a floating INPUT, a pull-up interrupt
INPUT, an open-drain OUTPUT or a push-pull OUTPUT as shown in the next screen shot.

&= RBuilder, - Application0 [User-Screen]

JJ File Actions Help
Select here the peripheral to configure ions for the current Peripheral/Fi
LA PORT & PIN O
—| [|—
¥ PORT A PIN 1
¥ PORT & PIM 2
¥ PORT & PIM 3
« PORT & FIN 4

o
o
o
=]
3
L
w
o
o
T

1]

¥ PORT & PIN 5 TMPUIT {floating]
¥ PORT & PIM & IMPUIT {floating]
« PORT A FIN 7 IMPUIT {floating)

Configure other peripherals

To select other peripherals, simply select the desired peripheral in the project tree as in the 1/10
example above, tick the Option checkbox and configure as you wish.

RAISONANCE -12-

Raisonance Tools for STM8/ST7 4. Building a new project

4.3.4 Generating your project

Once you have configured your project:
1. Select Project Generation in the Actions menu:

2. After doing this, RBuilder generates the sample/prototype
application code based on the project configuration, and
notifies you when generation is complete.

3. RBuilder then closes and returns to the main Ride7 window.
4. You can now compile the project.

! Project has been generated
LI

Warning: Once the project is generated, there is no way to go back to modify one option and
generate it again. If you find out that you were mistaken about an option, then you have to
restart the project creation process from the beginning.

4.3.5 Adding your application code

Once you are back in Ride7, source files will be added to your project. Most of the files in your project
are generated from the STM8/ST7 software library according to the configuration options that you
specified in RBuilder. These files should not need to be edited.

Two additional files are generated: myprojectmain.c and myprojectint.c

® myprojectmain.c is the main file of the project. In this file, RBuilder generates the initialization
function for all peripherals, the main () function and any user requested functions (for
example putchar and getchar for the SCI.

Project X

& | (2] show
= '3 Project ‘Applicationd’

= '] Application rode=907 dafa=297
| [ApplicationOmain.c code=260 const=20 paged=1
_@ ADC . coge=48 consf=0 pagad=4 data=0
_@ AClC roce=367 consf=29 pageit=1= data=iT
_@ TIMER..c code=57F const=0 paged=i§ data=05
_@ 1. code=277 const=F pagad=20 data=g

Globals | Documentation

e myprojectint.c contains all the interrupt functions. This file is generated only if the user
selected the use of interrupts in RBuilder. Otherwise it is not part of the project.
4.3.6 Main file

The following is an example of a main file, generated by RBuilder, for which the following peripherals
have been selected:

e |/Os

RAISONANCE -13-

Raisonance Tools for STM8/ST7 4. Building a new project
e Timer
e SCI
e ADC

In this file, you can see:

® The PeriphInit function (blue arrow) performs initialization for all peripherals according to
the options you selected in RBuilder.

e The main function (green arrow) is made of a call to PeriphInit to initialize all peripherals,
followed by an infinite loop that contains the application code. RBuilder gives you the possibility
to generate sample code for almost every peripheral. This example contains code for the ADC,
the SCIl and I/Os. You just need to add your specific code at the end of the function (red
arrow).

e The TERMIO PutChar function (brown arrow) is generated when you select Generate a
putchar function in RBuilder's SCI options section.

/* */
/* Project: Application0O */

/* File: ApplicationOmain.c */

/* Organization: =Y

/* Author: (initial version generated by RBuilder) */

/* Date: 5/6/2008 */

/% &7

#include "ST71ib config.h"

#include <stdio.h>

/* ___ */
/* Function: PeriphInit */

/* Purpose: Periph configuration at RESET */

/* Date: 5/6/2008 */

2 . */
void PeriphInit (void) {

I /* A/D Converter initialization */

ADC_Init(ADC_DEFAULT);
ADC Select Channel (3);

/* SCI initialization */
SCI Init (SCI_DEFAULT PARAMI1, SCI DEFAULT PARAM2);
/* NOTE: Baud rate calculation is performed for Fcpu= 6000000 Hz */
SCI Select Baudrate (0x0) ;
SCIERPR = 0x27; /* Set RX Baudrate (real= 9615) *x/
SCIETPR = 0x27; /* Set TX Baudrate (real= 9615) */
SCI_Mode (SCT_TX ENABLE|SCI RX ENABLE);

/* 16-bit timers initialization */

TIMERA Init(TIMER FCPU 4); /* Timer A */

/* I/0 Port initialization */

IO Init();

RAISONANCE -14-

Raisonance Tools for STM8/ST7

4. Building a new project

-

IO Input (IO _FLOATING IT, IO PORT B, 0x88);

IO Input (IO PULL UP IT, IO PORT B, 0x77);

IO Output (IO PUSH PULL, IO PORT F, 0x87);

IO Input (IO FLOATING IT, IO PORT F, 0x88);

}/* end of PeriphInit */

2 */
/* Function: main () */

/* Purpose: main routine */

/* Date: 5/6/2008 */

2 o ———————— */
void main (void) {

/* Configure the internal peripherals */

PeriphInit () ;
while (1){

}

{

}

/* * * * Sample code for the ADC * * *
This code works with the REva evaluation board. It performs the following:
a. Measurement of the voltage set by the potentiometer
b. Translation to a value that fits into the range [0, 7]
c. Copy of the resulting value to the Port F (LEDs as a gauge). */

int Conv_ Datal;

const char array Val Gauge [8] = {0xFE, OxFC, OxF8, 0xFO, OxEO, 0xCO, 0x80, 0x00};
ADC_Select_ Channel (3); /* Select channel 3 */
ADC_Enable(); /* Start conversion ADON bit is set */
while (!ADC Test Conversn Complete()); /* Wait till conversion completes */
Conv_Datal = ADC Conversn Read(); /* Read converted value */
if (!Conv _Datal) {

IO ByteWrite (IO PORT F, Oxff); /* Write Port F: all LEDs switched off */
}
else {

Conv_Datal >>= 7; /* Keep the 3 Most Significant Bits */

IO ByteWrite (IO _PORT F, array Val Gauge[Conv_Datall]); /* Write Port F */

}
ADC Disable();

/* Sample code for SCI */
puts ("Hello world");

/* Insert your code here... */

}/* end of main */

RAISONANCE -15-

Raisonance Tools for STM8/ST7 4. Building a new project
/* ___ */
/* Function: TERMIO PutChar */
/* Purpose: Putchar in polling mode on SCI */
/* Date: 5/6/2008 */
/* ___ */
» void TERMIO PutChar (char c) {
if (c == "\n'"){

SCI PutByte ('\r');

while (!SCI IsTransmitCompleted()):;
}
SCI_PutByte (c);
while (!SCI IsTransmitCompleted()):;

/2 *)
/* Function: TERMIO GetChar */

/* Purpose: Getchar in polling mode on SCI */

/* Date: 5/6/2008 */

/* ___ */

unsigned char TERMIO GetChar (void) {
unsigned char c;
while (SCI_IsReceptionCompleted() !=SCI_RECEIVE OK) ;
c = SCI GetByte();

return (c) ;

4.4 Adding your code to the project

Now that you have a project, you need to add your application code.

1. To add your source files, select Project > Add item.
This opens a file selection window where you add your source files in C or assembler.

2. To rebuild the application, just press F9 or select Project > Make All.
3. You can now debug your application with the simulator.

If you don't have source files, you can create your own, by selecting File > New ... > Source File
You can now enter your code. To save it, go to File > Save

RAISONANCE -16 -

Raisonance Tools for STM8/ST7 5. Debugging with simulator

5. Debugging with simulator

5.1 About the STM8/ST7 simulator

RKit-STM8 provides a simulator capable of simulating the most common STM8/ST7 peripherals. The
simulator lets you check your code as well as the interaction between your code and the peripheral,
before you debug with an in-circuit debugger or emulator.

5.2 STM8/ST7 derivatives supported by RKit-STM8

RKit-STM8 supports most of the existing STM8/ST7 derivatives to various degrees. The up-to-date list
of supported derivatives and the limitations of the software simulation can be seen in the Target
Options in Ride7.

5.3 Peripherals and main file used in example project

For the rest of this document we use a project that uses the following peripheral 1/Os:
e PORT A Pin 1 > Output (push/pull)
e PORT A Pin 2 > Output (push/pull)
e PORT A Pin 3 > Output (push/pull)
e PORT A Pin 4 > Output (push/pull)
The following code has been written in the main function:

int toggle = 0; /*This declaration goes at the beginning of the main*/

IO Write (IO PORT A, IO PIN 0, (toggle == 0)?I0 DATA HIGH:IO DATA LOW);
I0 Write (IO _PORT A, IO PIN 0, (toggle == 1)?I0 DATA HIGH:IO DATA LOW);
IO Write (IO PORT A, IO PIN 0, (toggle == 2)?I0 DATA HIGH:IO DATA LOW);
IO Write (IO PORT A, IO PIN 0, (toggle == 3)?I0 DATA HIGH:IO DATA LOW);

if (++toggle==4)
toggle = 0;

So you can easily build this project to use the simulator, as described in the chapter “Building a new
project in RBuilder”.

RAISONANCE -17 -

Raisonance Tools for STM8/ST7 5. Debugging with simulator

5.4 Launch the simulator

Before launching the simulation, you must configure the debugger.

To launch the simulator, type CTRL-D. If your project has not been built, it will be built automatically
before the simulator launches. Otherwise, the simulator launches immediately and you are now in the
simulator. Your Ride7 window looks like the following:

B Ride7 - APPLICATIONOMAIN.C QE‘

P fle Edt Wiew Project Debug Seripts Options Window Help

IEIOEHA R RX e o EE S SR ipDP| T PROIA &S

Debug nox APPLICATIONOMAIN.C | TIMER.c 4bx
=1 Applicationd ~
=3 Data Dump @@ |CodeC...
7 Disassembly View = _w* end of PeriphInit &/ ~
[FH Cade view
[Memary Yiew Iz =
5 o view /* Function: main() */
& Registers /% Purpose: main routine %/
=3 Peripherals /% Date: s/6/2008 */
g pa I wy
“g B - Cvoid main | vaid | f
% pC
o /7 Configure the internal peripherals =/
‘g PE = » PeriphInit():
% PF
Interrupt Cortroller _ B while i 1 |t
% FLASH
%4z scro E i
42 12¢ Cortraller & /% * * + Semple code for the ADC * * *
g spr This code yorks with the REva evaluation board. It performs the folloving:
“t¢ AD comverter a. Measurement of the voltage set by the potentiometer
g M 2 b. Translation to a value that fits into the range [0,7]

" SHe_Uabcbdon Hioer 5 ©. Copy of the resulting valus to the Forc F (LEDS &8 a gauge). v
Project | labals < - >
Project Options rx Disassembly Yiew [Applicationd] 1 x
f";":'r‘:“““ e 2w YA MEETIE P =™

Address Symbal Code. Mnemonic Code Cover.., |Last Action bl
11BA: #AgaC LD &, #08Ch 0 -
}/* end of PeriphInit %/
= Directories 11EC: cc1zEr b IO Input] =
Include Directories | $(RKEINC;S(RKENCNS PeriphTnie () ;
Output Directory (ApplcationDir)
Listing Directary $(applicationCir} const char array Val Cauge [2] = {0xFE, OxFC, OxF2, OxF0, OxE0, OxCO, Ox20, Ox00);
Library Directories §{RKtLB)ST? 11C2: ABOG LD &, #008h 0 -
= Advanced ST7/5TM8 options 11C4: g8 PUSH i) =
= Processor 11C5: A8L0 LD &, #010h 0 -
Device 5T72521R9 11C7: B797 LD 3CH, & [1} -—
11C9: AB00 LD &, #00Oh 0 -
11CE: 8798 LD 2CL, &] =
11CD: AEQD LD %, #000h 0 -
1icw. Fre] n W HnAETL n —
Debug Qubput 7 x
= Build development tools = - e
Build toalset Raisonance tools -
Atomatic variabies | Tnactive 05.000ms, 000 Starting debug pracess (Clock frequency: 12,000000 MHz)
= BRI Crhe T i 05.000ms, 000 Laading C:\Program Filesiraisonanceridelexanplesiapplicationd, aok
Debug tool 5T7 simulator 10C8 05.000ms. 000 Run
i, 116F 0s.000ms, 264 Stop at Breakpoint
Code offset 03]
Explore code Ho hd
udLog
'Stop at Breskpoint” 05.000ms. 264 10536 UM NS

The screen shot above shows:

1. ApplicationOmain.c: The source file as edited in C language or in assembly language.
The Code window that shows you the instruction to be executed by the simulator.

Disassembly View:This shows an image of the code in the Flash memory of the target.
Debug peripheral tree.
Project options window: Application and Advanced Options.
Debug output.
6. Toolbar which allows the user to control the simulation. (more information in the next section)
The following columns are available in the Code window -(Disassembly view):
e Address: The address where the instruction is located.
Symbol: The name of the symbol, if a symbol is located at this address.
Code: The byte-code located at this address.
Mnemonic: The mnemonic corresponding to the byte-code.
Code Coverage: The number of times the byte-code at this address has been executed.

o bron

RAISONANCE - 18-

Raisonance Tools for STM8/ST7 5. Debugging with simulator

5.5 Debug options

Choose the debugging environment:
e ST7 simulator or STM8 simulator for software debugging.
e RLink ST7 or RLink STM8 for hardware debugging. (see Chapters 6 and 7).

5.6 Debug controls

The debugging (software or hardware) is controlled by the debugger tool bar:

Q?.mﬂﬁfﬁ;t" ?|¢EE;¢E$I|FK

1 2 3 4 5 6 7 8 9 10 11 12 13
1. Make: Build the project (F9)
2. Cancel Make: Stop building the project
3. Start debug session (Ctrl D)
4. Stop debug session (Shift + Ctrl D)
5. Run debug (Ctrl F9)
6. Pause debug
7. Reset: Press this button to reset the application. (Ctrl F2)
8. Step into: On a function call in a line of the C source code, this button steps into the called
function. If it is not a function call, it goes to the next line in the source code. (F7)
9. Step over: On a function call in a line of the C source code, this button steps over the called

function. (F8)
10. Step out Exit functions (Shift + F7)
11. Run to (Ctrl Q)
12. Toggle breakpoint (F5)
13. Clear all breakpoints

5.7 Peripheral status view
To view the status of a peripheral, you must open it by clicking on the corresponding item in the Debug
peripheral tree.

For example, to simulate Port A (PA), double click on the PA icon in the Debug peripherals tree (see
section 4.4).

A PORT A view appears which shows the state of each pin of the port and lets ¥ N [|
you modify the registers: !

« Green indicates a value of one and red a value of zero.

« Byclicking on the LED it is possible to connect each pin of the port to a Net,
to VCC, the Ground or no connection.

0 F Mo Connection

DDHIE [Ma Connection

DRjO0 Mo Connection
(] 4]

Mo Connection
Mo Connection

Mo Connection

[Mo Connection
7 [Mo Connection

RAISONANCE -19-

Raisonance Tools for STM8/ST7

5. Debugging with simulator

5.8 Breakpoints

You can set a breakpoint either in the source file or in the code view.

5.8.1 Code view

In the code view, first select the line on which you want to stop. The line becomes grey:

Disassembly View [Applicationd] 1 x
® P | 34 o 2 b B 0[] O e
Address Syrnbol Code Mnemanic Code Cowver,,, | Last Action -~
12Ees 1z dh 1Zh u} ==
12CD: 15 dh 15h u} ==

DADDE = 0Ox00 ;
1ZCE: I0 Init 3F0L CLE PORTA_DDR u} ==

DEDDE = 0Ox00 ;
[DPCDDE = 0Ox00 ;
1z2Dpa: 3F07 CLE PORTC_DDR u} ==

IDDDE = 0Ox00 ;
12D4: SF0A CLE FORTD_DDR u} ==

DEDDE = 0Ox00 ;
1z2De: SFOD CLE FORTE_DDR u} ==

DFDDE = 0Ox00 ;
12D5: 3F10 CLE FORTF DIDE) - v

Then click on the Toggle Breakpoint button and the line becomes red:

Disassembly View [Applicationd] 3 x

[Q| ot 12 ¥ b= O[] O e

§ Address Syrmbol Code IMnernaonic Code Cover... |Last Action b
P1z0C: 12 db 1zh 0 -

12CD: 15 dhb 15h u} ==

PADDER = 0Ox00 ;

PEDDER = 0x00 ;

PGHTE_HHH

PCODDER = 0Ox00 ;

12D2: 3F07 CLE FORTC_DDR] -

PDDDE = 0Ox00 ;

12D04: 3F0A CLE FORTD_DDR] -

DEDDR = 0Ox00 ;

12D6: 3FO0D CLR FORTE_DDR] =

PFODDER = 0Ox00 ;

12D8: 3F10 CLE PORTF DDR] - v
This means that a breakpoint has been set on this line.

Disassembly View [Applicationd] 3 x
[Q| ot 12 ¥ b= O[] O e
§ Address Syrmbol Code IMnernaonic Code Cover... |Last Action b
P1z0C: 12 db 1zh 0 -

12CD: 15 db 15h] -

PADDER = 0Ox00 ;

PEDDER = 0x00 ;

PCDDE = 0Ox00 ;
12D2:
PDDDE = 0Ox00 ;
12D4:
DPEDDER = 0Ox00 ;
12Da:
PFDDE = 0x00 ;
12D5:

PQRTE_EEH
3F07F CLE PORTC_DDR
SR04 CLE FORTD_DDE
SFOD CLR PORTE_DDR
3F10 CLE FORTF DDR

RAISONANCE

-20 -

Raisonance Tools for STM8/ST7 5. Debugging with simulator

5.8.2 Source view

The application stops running when this line is reached and the line turns pink.

You can use the same procedure to set a breakpoint on a line of source code, or you can click on the
pink square in the margin next to the instruction. When you click on the pink square, a red dot appears,
indicating that a breakpoint has been set:

APPLICATIONOMAIN.C]

@@ CodeCowver...
S* Date: S/13/72008 */

#include f3T71ib config.h™
#include <stdio.h-

.
S* Function: maini) *F
/% Purpose: main routine */
/* Date: 5/13/2008 */
A
woid mwain [woid)

IE = = .

o8 — while { 1 14

e |

f¥ Trnsert wour cnde here. . %/

RAISONANCE -21-

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6. Debugging with hardware tools
RKit-STM8 can be used with a number of hardware debug tools (in addition to the Raisonance
simulator):
« RLink ST7 for in-circuit debugging ST7 applications using the ICC (not ISP) protocol.
« RLink STM8 for in-circuit debugging STM8 applications using the SWIM protocol.

Note: From a user interface point of view, basic debugging functions (stopping and resuming CPU
execution, setting a breakpoint, single-stepping, checking memory and registers, etc.) are identical,
whether you are using the simulator or a hardware debug tool. Refer to the previous chapter and get
familiar with the simulator before starting to work with the hardware debug tools.

6.1 Selecting hardware debug tool

In the Advanced STM8/ST7 > Debug environment > Debug tool menu of Ride7 choose your target
hardware debugger. Select the tool that corresponds to your debug hardware e.g. RLink_ST7. You
should select RLink if you are using:

« RLink connected to the target STM8/ST7 on your application board via an ICC/SWIM connector,
« REva evaluation board, which includes an embedded RLink.
« Primer stick (ST7UltraLite, ST7FOX, STM8A, ...), which includes an embedded RLink.

Properties §|
Configuration: ST7-Middle w
Application Options =l Debug environment
= Advanced ST7/STME option | [SEENATER] RLink ST? v
Processor ST7 simulatar
Build development tools | ode offset
ngug el.'uvironment Explore cods Mo
Compiler Dptmhs Skart mode main{) function entry
Assembler options
Linker options
RLink ST7 Configuration
Debug tool

Selects the tool to be used for debugging.

Reset to defaulk this group options] [Close

RAISONANCE -22-

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.2 RLink programming (ICP) and debugging (ICD) features

The RLink is a USB interface device designed by Raisonance. It allows In-Circuit-Programming (ICP)
and In-Circuit-Debugging (ICD) of various microcontrollers, including all the ST7 and STM8 devices
supported by RKit-STM8. (see the up-to-date list in the Target Options).

Note: ST7 devices with HDFlash and no debug module can be programmed, but debugging through ICC

is very limited with them. (See Section 5.6.9 Limitations for ST7 HDFlash targets without debug module
for more information).

With the ST7 devices, RLink uses the In-Circuit-Communication (ICC) protocol from ST to perform ICP
and ICD. RLink versions up to V2.02 feature the standard 10-point ICC connector, as defined by ST,
directly on the RLink. Version 3.0 and earlier versions require an adaptor that converts the 24-point
RLink connector to a 10-point ICC connector.

Note: ST7 devices that do not support the ICC protocol are not supported by the Raisonance tools.

These devices use the ISP or other protocols. Please contact ST for information about tools supporting
these devices.

With the STM8 devices, RLink uses the Serial Wire Interface Module (SWIM) protocol from ST to
perform ICP and ICD. RLink versions 3.0 and earlier require an adaptor to feature the standard 4-point
SWIM connector as defined by ST. RLink V2.02 and older versions cannot be used with STM8.

6.2.1 RLink USB driver
Windows automatically recognizes when an RLink is plugged in, then it must associate the RLink with
a USB driver.

The USB driver should be installed before you plug the RLink. Unless you have specified otherwise, it
is installed along with Ride7. If the USB driver has not been installed, launch the program
RlinkUSBInstall.exe. For standard installations of Ride7, it is located in:

C:\Program Files\Raisonance\Ride\Driver\RLinkDrv\RLinkUSBlInstall.exe
After running this program, when you plug an RLink in, Windows recognizes it automatically.

6.3 REva board

The REva demonstration board includes an RLink. The whole board can be powered by the USB
through the RLink. The target chip is placed on an interchangeable daughter board that can include
different targets. For Ride7, (and for Windows and the USB driver) there is no difference between
operating the REva and using an RLink with any other application board featuring the ICC or SWIM
connector.

For more information about the demo board itself (schemes, etc.), see the appropriate documentation.

RAISONANCE -23 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.4 Configuring RLink STM8

After selecting RLink STM8 as your debugging tool (see section “Selecting hardware debug tool”), click
on the Advanced Options button to open the RLink_STM8 options dialog box shown below:

RLink_STM3 options -l

Selected Target Instart actions

E— Important: Select the comect

STMBS205RE derivative in the Processzor Options. View RLink REva Eraze target

jumpers ol
: : configuration faor [remove read-out

Options for Debug sezsion STMa S

[#] Eraze Flash [¥] Program Flash

@ @l Connect to RLink Dump target

|| Eraze EEPROM |+ Program EEPROM e FL.-’-\SH
senial number ta hex file

7l Erage and Program Dption Bytes
" from data at address 044800

[¥] Debug Application Eonpackiotaioet

Write target
= Activate = Give buz access priority STMg_ar]ccllread FLASH nowl
' Read-0On-TheFly ' to debugger over core =

[0k | [Cancel I | Help |

L 4

1. ltis critical to check that the Selected Target corresponds to your chip.
If not, you must go back to the Ride7 main screen and change the Device selection.

2. Select the memory regions that you want Ride to Erase and Program before debugging.

3. To debug your application, confirm that Debug Application is checked.
Uncheck the Debug Application option if you want to use RLink as a simple programmer,
e.g. if you want to run the application on the STM8 without debugging it.

4. Select if you want to Activate Read-On-The-Fly. This option will make debugging more
comfortable by updating the memory views during CPU execution.

5. The Read-On-The-Fly option, but also the “normal” debugging communication can create bus
access conflicts if your application makes heavy load on the bus. That can result in slow or
stalled debugging. To solve this you can select the Give bus access priority to debugger over
core option. But you must be aware that this might impair the real-time execution feature of the
debugger by slowing down the application's execution. So you should only activate this option if
you have slow or stalling debugger.

6.4.1 RLink STMS8 Instant actions

This section of the RLink_STMS8 options dialog box carries out the instant actions listed below without
leaving this dialog box. This is useful for testing connections and retrieving information from the RLink
and your ST7, as well as for programming the ST7 and its option bytes.

e Connect to RLink and read serial number is useful for checking that RLink is working and
properly connected and that the USB driver is correctly installed. It also allows you to read the
RLink serial number, which you will be asked for if you contact our support team.

e Erase target now! allows you to completely erase the target's Flash (writing 0x00), option
bytes and EEPROM (if your STM8 features any). This is the correct way to remove the read-
out protection from a protected device.

e Dump target FLASH to hex file reads the contents of the Flash and writes it in a file in hex
format whose name is derived from the current application's name with the extension .hex
(<application name>.hex).

e Write target FLASH now! programs the Flash with the current application's hex file generated
by the linker. Then, launches the execution in user mode.

RAISONANCE - 24 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.4.2 Jumpers for RLink STM8 using ADP

If you are using a V3.0 RLink or earlier, which features a 24-point connector, you must use an adaptor
(ADP) for connecting to STM8 devices. These adaptors convert the 24-point RLink connector into a 4-
point SWIM connector. These ADPs contain jumpers that you may need to set, or not, depending on
your situation.
All versions of ADPs ST7-STM8 allow connection to STM8 devices.
Version 1.X can only connect to STM8 devices with a power voltage as low as 2.2V.
Version 2.x allows to connect to STM8 devices with a power as low as 1.6V.
All versions also allow to connect to ST7 devices.
These ADPs feature four jumpers:

« Jumper “SWIM” for selecting SWIM or ICC protocol. (select SWIM for STM8)

- Jumper “PW5V” for transferring the 5V power from RLink to the target STM8 board. Use this if
your board has no power and you want to power it from the RLink. !!! ONLY DO THIS IF YOUR
TARGET BOARD IS 5V-COMPLIANT !!!

« Jumper “Adapt” which should be used if your board's power supply is lower than 3V. This jumper
allows to reduce the value of the ADP's pull-up resistor on the SWIMDATA signal.

« Jumper “12MHZ” is for ST7 only. Do not set it when connecting to STM8 devices.

6.4.3 Jumpers for STM8 REva board

If you are using a REva board, you must make sure that | Riink jumpers for TMa =)
the jumpers are set correctly on the RLink part of the

board.
To do this. click on View RLink jumpers configuration This iz how pou must set t_he iumpers of the HLi_nk that iz on
’ the REwa for communicating with the STE using Swikd.

for STM8. The following illustrations showing the STM8
configuration for the RLink jumpers are displayed:

Standard configuration for STME

Note: Should the pictures in this documentation and in Ride7 be different, please assume that those
shown in Ride7 are correct. If you purchased RLink as part of a STM8 kit (such as the REva board for
STMB8), then the jumpers should already be correctly set. For this reason, you should only need to adjust
these jumpers if they were accidentally unplugged, or if you are using an RLink that was configured for
another protocol, such as ICC.

RAISONANCE -25-

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.5 Configuring RLink ST7

After selecting RLink ST7 as your debugging tool (see section 6.1.Selecting hardware debug tool), click
on the Advanced Options button to open the RLink ST7 options dialog box shown below.

1. ltis critical to check that the Selected Target corresponds to your chip.
If not, you must go back to the Ride7 main screen and change the Device selection.

RLink_ST7 options g]
WARMING: Be sure that pou have selected the corect Instant actions
derivative in the T arget options. -
o C RLink Yiew REva
Selected Target RC Calibration onnezlt to $ In jumpers
seﬂgl rﬁ:ber configuration for
[ebug sezsion entiy
) Eraze target
Ignare aption bytes. D'ebug after programming ol
[remove re_ad-out
Option Bytes options protection]
Walue to program
@ Leave asis Optioh Byte 0: 02 Read target option Du'l_'anﬁtSalilget
bytes 2
() Restore default Option Byte 1 [if ary] - Ok to hex file
() Program
w'rite barget
FLASH nowl
[ok | ’ Cancel] [Help]

2. Next, indicate the preferred reset method to use when establishing in-circuit communication with the
target ST7 by checking or unchecking the “Ignore Option Bytes” checkbox. See the ICC section of
your device Datasheet for more information about this.

If you do not know, just leave the default: If the first method fails, Ride7 will try the other, the only
drawback for you is that the reset will take a little more time (less than half a second more).

Be careful that the external clock is provided (either from RLink or another external source) if both
your device's default option bytes and current option bytes select the external clock.

3. To debug your application, confirm that Debug is checked.
Uncheck the Debug option if you want to use RLink as a simple programmer, e.g. if you want to try
the application on the ST7 without debugging it.

Note:

If the Debug option is checked, the application will be patched (to add code such as reset and trap
vectors for debugging) and is only executed if it is driven by Ride7 through RLink.

If the Debug option is unchecked, then launching the debug session will simply program the unpatched
code to your ST7 and start execution. This is useful when using RLink and you do not have the source

code.

RAISONANCE - 26 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.5.1 Option bytes

Next, you need to configure how the ST7's option bytes are handled.
e Leave as is: the option bytes are not programmed. They retain their current values.

o Restore default: tells Ride7 to erase the option bytes and restore the default values before
loading the Flash and debugging. If you want to know what value will be loaded when selecting
this option, then click the Default button, and you will see the default values in the Value to
program section. These default values are NOT the factory settings. They are the values that
are best for debugging and they are not fit for production. (minimal protection, etc.)

e Program tells Ride7 to erase the option bytes prior to programming the Flash memory, and to
program the option bytes with the value that you have specified in the Value to program
section. The option bytes are programmed after the Flash memory has been programmed.

e Value to program: This is the value that will be written in the option bytes if the Program
option is selected. You can change the value by typing the value that you want in the Option
Byte 0 and the Option Byte 1 fields (refer to your device datasheet for the meanings of these
values), or by selecting Change value and configuring the options controlled by each option
byte in the Options dialog box (shown below).

Warning: Some option byte values such as those controlling read-out, debug and re-write

f protection will prevent any further re-programming of your ST7. Be careful when setting the
option byte values and refer to your device Datasheet for complete descriptions of the option
byte values for your ST7.

Options E|

= Option Byte

Auto Wake Up Clock Selection
Dzcillator Range

Sector 0 size definition

FL&5H read-out protection
FLASH wirite protection

FLL Factor Selection

FLL Dizable

RC Oszcillator S election

Lows Woltage Detection zelechion
Hardware or Software "W atch-dog
W atchdog Reset on Halt

Al RC Ozcillator selected as AU clock
Esternal Clock on OSC1

0.5k

Read-out protection off

Wirite pratection off

FLLx8

PLL dizabled [bypaszsed)

RC Oszcillator on

LwD Off

Software [watchdog to be enabled by software]
Rezet generation when entering HALT mode

Value: O |DOEF ok] | Cancel |

The Options dialog box shows the meaning of each bit of the option bytes. This can help prevent
errors resulting from typing the wrong value to program to the option bytes. Click on the field on the
right to select option byte settings from a drop-down list of possible settings.

Finally, clicking Default restores the default value in the edit fields if you think that you might have
typed in an incorrect value.

Note: Restore default is the same as Program with the default value, but it's faster!

RAISONANCE - 27 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.5.2 Instant actions

Inztant actions

Wiew REva
jumnpers
configuration for
ST7

Connect to RLink
and read
zerial number

Eraze target
ol
[remove read-out
protection)

Dump target
FLASH
to hex file

Read target option
buytes

Wiite target
FL&SH riowl

This section of the RLink_ST7 options dialog box carries out the instant actions listed below without
leaving this dialog box. This is useful for testing connections and retrieving information from the RLink
and your ST7, as well as for programming the ST7 and its option bytes.

e Connect to RLink and read serial number is useful for checking that RLink is working and
properly connected and that the USB driver is correctly installed. It also allows you to read the
RLink serial number, which you will be asked for if you contact our support team.

e Read Calibration values reads current values for calibration, address and frequencies. (for
ST7FOX devices only)

e Read target option bytes allows you to read the option bytes currently written in the chip. Use
this also to test the connections and power of the target ST7.

e Write target option bytes now! allows to program the option bytes without leaving the
configuration window. When programming them, Ride7 takes into account the settings in the
Option bytes options section of the dialog box (see the previous section). It will do nothing if
the "Leave as is" option is selected. It will erase and write the default value if the Restore
default option is selected, and it will program the value displayed in the edit fields if Program
is selected.

e Erase target now! allows you to completely erase the target's Flash (writing OxFF), option
bytes (restoring the default value) and EEPROM (if your ST7 features any). This is the correct
way to remove the read-out protection from a protected device.

e Dump target FLASH to hex file reads the contents of the Flash and writes it in a file in hex
format whose name is derived from the current application's name with the extension .hex
(<application name>.hex).

e Write target FLASH now! programs the Flash with the current application's hex file generated
by the linker. Then, launches the execution in user mode. When using this instant action, the
code is not patched for debug, even if the Debug option is checked.

6.5.3 RC calibration

This setting applies only to the ST7 Fox family.
At each erase, calibration automatically starts.
Current values for calibration, address and frequencies can be read via the Instant actions menu.

6.5.4 Jumpers for RLink ST7 using an adapter

If you are using the version 3.0 of RLink or earlier, which feature a 24-point connector, you must use an
adaptor (ADP) to convert the 24-point RLink connector into a 10-point ICC connector to connect to ST7
devices. These ADPs contain jumpers that you may want to set, depending on your situation.

RAISONANCE - 28 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

ADPs ICC-ST7 and ST7-STM8 all allow to connect to ST7 devices. Some of them also allow to
connect to STM8 devices. Depending on the versions, these ADPs feature up to four jumpers:

« Jumper “SWIM” for selecting SWIM or ICC protocol.

« Jumper “PW5V” for transferring the 5V power from RLink to the target ST7 board. Use this if
your board has no power and you want to power it from the RLink. !!! ONLY DO THIS IF YOUR
TARGET BOARD IS 5V-COMPLIANT !!!

« Jumper “Adapt” which is for STM8 and should not be set when connecting to ST7.

« Jumper “12MHZ” for sending the 12MHz clock to the target ST7. Use it if your target ST7 board
does not feature a clock (crystal or oscillator) and you want RLink to provide one.

6.5.5 Jumpers for ST7 REva board

If you are using a REva board, you must make sure that the jumpers are set correctly on the RLink part
of the board. To do this, click on View RLink jumpers configuration for ST7. The following
illustrations showing the ST7 configuration for the RLink jumpers is displayed:

RLink jumpers for ST7

Standard configuration for 5T7 and REwva w2 » Standard configuration for ST7 and REwva w3
This iz how pou must et the jumpers of the BLink w22 that iz Thiz iz how yau must zet the jurmpers of the RLink v3.% that iz
on the REva w2 & for communicating with the ST7 using ICC. on the REwa w3.% for communicating with the ST using 1CC.

Note: If the pictures in this documentation and in Ride7 are different, please assume that those shown in
Ride7 are correct. If you purchased RLink as part of an ST7 kit (such as the REva board for ST7), then
the jumpers should already be correctly set. For this reason, you should only need to adjust these
jumpers if they were accidentally unplugged, or if you are using an RLink that was configured for another
protocol, such as JTAG.

RAISONANCE -29-

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.5.6 Advanced breakpoints

The interface for operating the debugger is exactly the same as for the simulator. However, there is
one feature that is specific to the ST7 devices with a debug module: the advanced breakpoints.

M Ride7 - ADC_LEDSMAIN.C
I Fle Edit Wiew Project | Debug | Scripts Options window Help
3 ; . ; 3 n 3
P 2 DD k| % 3 LC O e g SN JE i
Debug ‘P Reset Chrl+F2 m
= [C:iProgram Files\Raisond | Terminate Ztrl+Shift+C
=-43 ADCLeds Load... Chri+L
=1 Data Dump % AfD Converter initisli
=1 Disassembly { P> Run Chri+F9 ADC Init (ADC DEFAULT) :
A . —_— -
Code Yiew ADC Select Channel(l):
e Mermary Yiew =
FE Bit View - e B /% I/0 Port initializatio
| Reqgisters %= sSkep Into F7 Io Inmit();
Peripheral -
=14 v{;rlﬁ:ras EE Simp Gy Fa IC Cutput (IC PUSH PULL, I
%% PB = Step Out shifk+F7
1% Interrupt Con Resst Time Chrl+T 1/* end of PeriphInit #/
“% FLASH L
% EEPROM Wiew Disassembly Code N
“ig 510 Show Execution Point Cerl+F3 f£* Function: main() */
aPI . i
o Refresh Debug Windows /* Purpose: MALN LOut
“1% AD converte A% Date: 321720086
“T§ MCC | Advanced Commands 3 | Er. Advanced Breakpoirts ... | ——————
Watchdog i =
T Watchdog tirf ™ aeh Fé mTwoTa T
“I% AT timer
Inspect Chrl+1 J* Configure the internal
< P Toggle Breakpoint FS PeriphInit();
Project | Globals | Debug |I £

Once the debug session has started, if your ST7 device features a debug module, click on Debug >
Advanced Commands > Advanced Breakpoints to open the Advanced breakpoints window which
allows you to select the break conditions and addresses. (If this option does not appear, then your
device probably does not have a debug module. You can check this on your device Datasheet.)

Advanced breakpoints

Break conditions:
00: Dizabled w

BK1: 0 | FFFF Bk2 0w |FFFF

Cancel

The advanced breakpoints configuration is discarded upon reset.

Note: If you use the debug module to set advanced breakpoints, the debugger cannot use them and
may not be able to set standard breakpoints (if the target ST7 has HDFlash or if the breakpoint is in
sector 0 of an XFlash device, then Ride7 cannot set the breakpoint). To let Ride7 use the debug module
for standard breakpoints again, you must go to the Advanced breakpoints window and disable them.

RAISONANCE -30-

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.6 Hints and troubleshooting

6.6.1 Example projects

The examples in the Ride7 directory REva folder are configured for use with a REva evaluation board,
which includes an RLink. For standard ST7 installations they are found at:

C:\Program files\ Raisonance\Ride\Examples\ST7\REva.

For standard STMS8 installations they are found at: C:\Program files\
Raisonance\Ride\Examples\STM8\REva.

These examples can be used with other demonstration and evaluation boards with a standard SWIM
or ICC connector and the RLink. These examples can be compiled using the C toolchain during the
evaluation period (30 days, no code size limitation) or with a purchased compiler license (Lite or
Enterprise). Some examples are too big to be compiled with the demo version. These particular
examples include a precompiled version of the application that you can download, run and debug, but
you will not be able to modify and recompile it.

Before using an example, look at it and make sure that the jumpers on the REva board are set
correctly (enables for the LEDs, buttons, SCI, EEPROM, etc.). Usually, there is some important
information in comments at the beginning of the main file (i.e. the file that contains the main function).

6.6.2 Testing USB driver, connections and power supplies

To test the USB driver installation and RLink operation, use Connect to RLink instant action. RLink
appears in Windows' device manager under the Jungo section if it is correctly recognized in Windows
XP, NT and later. It appears under the RLinkWinUSBClass section in Windows Vista and earlier.

To test the connections and power of the target board and STM8/ST7, use the Read option bytes
instant check. This operation requires RLink to connect to the target STM8/ST7, ensuring that it is
powered, correctly connected to RLink, and that the rest of the application board does not interfere with
the communication between RLink and the STM8/ST7 (see below).

6.6.3 Debug pins

The STM8 uses the RST and SWIMDATA pins. The ST7 uses the RST, ICCCLK and ICCDATA.

These pins communicate between the RLink and the target STM8/ST7. So you must ensure that the
rest of the system (i.e. the other components on the board) does not use them. This also means that
your application cannot use these pins if you plan to debug it with RLink.

These pins' addresses depend on the target STM8/ST7. Please refer to Chapter 6 Building an ICD-
compliant application board and your STM8/ST7 device Datasheet for more information.

6.6.4 Handling option bytes for ST7

Here are the suggested ways to handle the option bytes, depending on the state of your project:

e While you are still debugging the application, you will probably re-program the target ST7 quite
often, but the option bytes values will not change much. Since you are always using the same
device, there is no need to re-program the option bytes every time. In this case, program them
once using the Write target option bytes now! instant action, and then select the Leave as is
option for the debugging sessions.

e When you are in the pre-production phase (debugging is complete and you are programming
multiple ST7s), select Program, so as to program the option bytes for each ST7 device (and
uncheck the Debug option in the actions for debug session).

e Also, remember that if you protect the Flash memory against read-out (or write) with the option
bytes, then you will not be able to debug. So even if you already know that your final application
will be protected against read-out, you should not do so during the development phases of the
project when you still need to debug.

RAISONANCE -31-

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.6.5 Handling option bytes for STM8

In STM8 devices, the option bytes are simply mapped in the memory space (see the device datasheet
from ST to know the addresses and contents of the option bytes in your particular STM8 derivative).
The option bytes are accessed along with the Flash during the programming phases.

To program them, your compile chain must generate some data at these addresses in the application
file. Then the option bytes are programmed whenever you program the application to Flash. See how it
is done in the STM8_OB.asm file in this example:

<RidelnstallDirectory>\Examples\S TM8\REva\STM8S208RB\Toggle\...
If you do not want to program them, just leave these addresses unreferenced in the application.

If you want to read them, just read the Flash out to a file using the Instant actions or RFlasher or
STM8_pgm.exe. The option bytes are dumped along with the Flash and are seen in the resulting file at
the corresponding addresses.

6.6.6 Command-line programming tool

In the Ride7 binaries directory (for standard installations C:\Program Files\Raisonance\Ride\Bin), you
find programs named ST7_pgm.exe and STM8_pgm.exe. These executable files erase and program
the STM8/ST7 connected to the RLink. Call one of them in a DOS prompt with no arguments in order
to see the help that explains the command line arguments.

6.6.7 Protected addresses

You will notice, in the Code view, that some values have a red square with a white dash next to them.
These are “protected addresses”. These values are never updated, and you cannot modify them. This
means that Ride7 never reads them because they are special peripheral registers that are modified
whenever they are read. Any access would interfere with the execution of the application.

& | % -| =]l
N00o0: 00 00 00 00 00 00 FF FF . .
n008: FFEFF FF OFFRFFROCR00 o0 . .
0010: 00 00 o0 ooRFFRFFRFFEOO . .
0018: 00 FF FF FF FF FF FF FFH,
00z0: FFEFFRFF FF FF FF FF FF . .
no0zs: FF FF FF FF FF FF 7F 00 . .
0030: 00 FFEOF ooBoo FrEooBoo ..
0038: 00 FF FF FF FF FF FF FF . .
0040: €O FF 00 00 OO0 FF 00 00 . .
0048: FF FF FF FF FF FF FF FF . .
n0s0: FF FF FF FF FF FF FF FF . .
n0ss: FF FF FF FF FF FF FF FF . .
noso: FF FF FF FF FF FF FF FF . .
n0sg: FF FF FF FF FF FF FF FF . .
n070: FF FF FF FF FF FF FF FF . .
n078: FF FF FF FF FF FF FF FF . .
n0g0: FF FF FF FF FF FF FF FF . .
no0ss: FF FF FF FF FF FF FF FF . .
n0s0: FF FF FF FF FF FF FF FF . .
n09g: FF FF FF FF FF FF FF FF . .

QokD: FF FF FF FF FF FF FF FF . .
Nnif: F®F FF FF FF FF _FF _FF_WFF

6.6.8 Limitations of RLink compared to the emulators

e Debugging STM8/ST7 devices through SWIM/ICC uses 5 bytes of stack and some /O pins
(SWIMDATA for STM8, ICCDATA and ICCCLK for ST7).

e It also uses about 195 bytes of Flash memory for ST7 devices with HDFlash, and ST7 devices with
XFlash that do not feature the advanced version of the ROM-monitor (like the ST7Lite0. See the
device datasheet).

6.6.8.1 ST7 monitor code

e Monitor code is loaded in the Flash along with the user application.
e Itisloaded at the highest address where the application contains enough contiguous OxFFs.

RAISONANCE -32-

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

The size of the monitor is OxCC bytes.
If the application does not contain enough contiguous blank bytes, then debug is not possible.

6.6.8.2 Watchdog and reset

Activation of watchdog makes the monitor crash. You must disable watchdog when debugging.

The RESET signal is controlled by the RLink during the whole debugging process. Therefore,
the RESET button on the target board (if there is one) will probably not work and might even
make the debugger crash if it is pressed. You should not use it.

You can reset the CPU by using the RESET command in Ride7.

6.6.8.3 Limitations for ST7 XFlash targets without debug module (ST72F26x,ST7FLITEOQ/Sx)
(ST72F26x, ST7FLITEOX, ST7FLITESX):

ICCCLK and ICCDATA lines communicate between the RLink and the target ST7. These lines
are reserved and should not be used by the application being debugged.

5 stack bytes are used for communication between the RLink and the target. These stack
bytes cannot be used by the application.

A TRAP vector points to the dedicated RLink-loaded code that manages breakpoints. A
breakpoint is a TRAP instruction patched into the application code. For this reason, the TRAP
vector and TRAP instruction are reserved for RLink.

During debugging, peripherals continue to run even when the application has stopped.

It is not possible to set a breakpoint in sector 0. For this reason, sector 0 should be configured
to its smallest size (0.5Kb) with the option byte.

Pressing Stop while debugging in Ride7 is the same as a reset, and returns the program
counter to the main function.

Additional limitation for ST7FLITEOx and ST7FLITES2/5: 195 bytes in Flash memory are
reserved for code that manages communication between the RLink and the target ST7.
These bytes cannot be used by the application.

This code is loaded when the application is programmed to the ST7.

The programming algorithm places the code as high as possible in Flash memory.

This code never overwrites the interrupt vectors. If there is not enough space for it, Ride7
returns an error message indicating that the user cannot debug the application.

6.6.8.4 Limitations for ST7 XFlash targets with debug module (ST7FLITE1/2/3x)
(ST7FLITE1x, ST7FLITE2x, ST7FLITE3x):

ICCCLK and ICCDATA lines communicate between the RLink and the target ST7. These lines
are reserved and should not be used by the application being debugged.

5 stack bytes are used for communication between the RLink and the target. These stack
bytes cannot be used by the application.

A TRAP vector points to the dedicated RLink-loaded code that manages breakpoints. A
breakpoint is a TRAP instruction patched into the application code. For this reason, the TRAP
vector and TRAP instruction are reserved for RLink.

During debugging, peripherals continue to run even when the application has stopped.
It is possible to set up to 2 breakpoints on sector 0, or 1 advanced breakpoint.

6.6.8.5 Limitation for ST7 HDFlash targets

5 stack bytes are used for communication between the RLink and the target. These stack
bytes cannot be used by the application.

195 bytes in Flash memory are reserved for code that manages communication between
RLink and the target ST7.

These bytes cannot be used by the application.

This code is loaded when the application is programmed to the ST7.

The programming algorithm places the code as high as possible in Flash memory.

This code never overwrites the interrupt vectors. If there is not enough space for it, Ride7
returns an error message indicating that the user cannot debug the application.

RAISONANCE -33 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

6.6.9 Limitations for ST7 HDFlash targets without debug module

Flash breakpoints

e Breakpoints in Flash are made by adding TRAP instructions in the application code at compile
time. You can use the "Breakpoint" macro defined in st7lib_conf.h to do this easily.

e The trap interrupt cannot be used by the application when debugging.

e The trap ISR should be defined and do nothing, in order to avoid breakpoints doing a reset
when just running the application (not debugging).

e RAM breakpoints can be set and cleared normally.

e Stepping needs dynamic breakpoints. Therefore, it does not work with HDFlash devices
without a debug module.

e Ride7 implements a half-simulated stepping feature called “virtual emulation”. This mode is
automatically activated whenever you request a step (at C or assembler level) while debugging
on an HDFlash target without a debug module. In this mode, Ride7 simulates the ST7 core just
as if you were debugging using pure software simulation. But it updates the real CPU data and
registers accordingly, and therefore the peripherals (GPIO, etc.) actually run on the real device,
making it possible to interact with the rest of the system.

e This simulation mode is NOT real-time, and disables the interrupts if they were enabled. After
that, when the program is run again using the GO command, the interrupts are re-enabled (if
needed), and program execution resumes in the real CPU, providing real-time emulation
again.

Code in RAM

e Executing a function in RAM is the best way to debug it.

e Look at the compile and link documentation for how to place code in RAM. In a future versions
of Ride7, we will add a simple syntax in the compiler to easily place a function in RAM memory.

Stop
The Stop command needs an interrupt enabled (depends on the target), and additional configuration:

Stop for 361 and 561

e The eil interrupt on PB5 is used.
The monitor automatically enables ei1, but it lets the user application enable the interrupts.
The application must enable the interrupts using RIM for STOP to work.
If the application disables ei1 or changes PB5 configuration, STOP will not work.
Beware of I0_Init function that disables it.
We advise to place a breakpoint after peripheral init, which enables the break on PB5
again.
ei1 should be kept at the highest IT level.

e The other ei1 interrupts can still be used, but the monitor will add 2 instructions before

entering the ISR (BTJF then JP).

Stop for 63B

e The external IT ITi is used.

e The user application has to use RIM for enabling interrupts and to enable the STOP.

e The user must plug a wire between ICCDATA and the signal associated with the enabled
IT.

e It must be one of the 4 falling-edge-sensitive signals (PA6, PA7, PB6, PB7).

e Debugging prevents the application from using the ITi, even with the 7 other signals
associated with this interrupt. Therefore, it is not possible to debug applications using ITi
with this monitor.

Stop for 321, 324, 521
e External IT ei2 is used for stopping the execution.

RAISONANCE -34 -

Raisonance Tools for STM8/ST7 6. Debugging with hardware tools

e The user application has to use RIM for enabling interrupts and STOP.

e The user application has to configure one of the pins associated with ei2 (PB0,1,2,3) to
generate IT on falling edge.

e The user must plug a wire between ICCDATA and one of the signal associated with the
enabled IT.

e It must also configure the signal as input with interrupt on falling edge.
The selected IT cannot be used for any other purpose than debugging.

e The user can choose to disable the STOP feature, in order to use the 4 PB0,1,2,3 pins
and/or ei2 in his application. To do this, just don't plug the wire on ICCDATA.

RAISONANCE -35-

Raisonance Tools for STM8/ST7 7. ICD-compliant application board

7. ICD-compliant application board

In-Circuit Debugging (ICD) and In-Circuit Programming (ICP) are applications of the SWIM or ICC
protocol developed by ST for STM8 and ST7 microcontrollers. With the necessary connection
hardware, these protocols allow you to read and write to your STM8/ST7's Flash memory, and control
the running of your application on your microcontroller.

These protocols are used by RLink and the other STM8/ST7 in-circuit debuggers and programmers.

To take advantage of SWIM/ICC, you must integrate a SWIM or ICC connector into your application
hardware when you start developing your application. To help you implement ICP and ICD in the
development of your application, this chapter provides a summary of points you should consider when
installing an ICD connector.

7.1 SWIM connector for STM8
To connect to your application board for ICP and ICD, you must install a 4-pin SWIM connector and
ensure the appropriate connections to your STMS.

This connector receives the SWIM cable and relays the signals required for ICP and ICD to your
STM8.

The table below describes the SWIM connector and its pins usage:

Connector pin STM8 pin (see pin number Function

(and pin number) on device datasheet)

VDD_APPLI (1) VDD Device power supply
SWIMDATA (2) SWIMDATA SWIM Input/Output serial data pin
GND (3) GND Ground

SWIMRESET (4) RESET Device reset

7.1.1 SWIMDATA pin

This pin transfers data between the RLink and the target STM8 microcontroller.

As soon as the programmer’s SWIM connector is connected to the application board, the SWIMDATA
pin should not be used by other application devices, even if a SWIM session is not in progress. The
RLink and its ADP include 50 Ohms serial resistors that provide a limited protection. However, there is
no guarantee that this protection will be enough to prevent damage to occur in case of electrical
conflict.

7.1.2 SWIMRESET pin

This pin resets the target STM8 microcontroller from the host PC through the RLink.

During a SWIM session, you must ensure that the RLink controls the STM8’s RESET pin so that no
external reset is generated by the application board. This can lead to a conflict if the application reset
circuitry signal exceeds 5mA (push-pull output or pull-up resistor <1KQ). To avoid such conflicts, a
Schottky diode can be used to isolate the application reset circuit.

You can place a capacitor on the RESET pin, but it should not be too large; if the rising time of the

reset signal is too long, RLink might think that the device is not connected or not operational and

programming or debugging is impossible. 0.1uF should be fine. Larger values should be avoided.
7.1.3 VDD_APPLI pin

This pin is used by tools with a power supply follower, such as RLink. This connection is needed by the
power supply follower to detect the supply voltage and power the RLink's 1/0Os accordingly.

RAISONANCE - 36 -

Raisonance Tools for STM8/ST7 7. ICD-compliant application board

7.2 ICC connector for ST7
To connect to your application board for ICP and ICD, you must install a 10-pin, HE-10 type connector
(also called an ICC connector) and ensure the appropriate connections to your ST7.
This connector receives the ICC cable and relays the signals required for ICP and ICD to your ST7.
The table below describes the ICC connector and its pins usage:

Connector pin ST7 pin (see pin number | Function

(and pin number) on device datasheet)

GND (1, 3,5, 10) GND Ground

VDD_APPLI (7) VDD Device power supply

ICCDATA (2) ICCDATA ICC input/output serial data pin

ICCCLK (4) ICCCLK ICC input serial clock pin

ICCRESET (6) RESET Device reset

ICCSEL/VPP (8) ICCSEL/VPP Programming voltage and ICC selection
ICCOSC (9) OSC1 or OSCIN Main clock input for external clocking (optional)

7.2.1 ICCDATA and ICCCLK pins

These pins transfer data between the RLink and the target microcontroller.

As soon as the programmer’s ICC connector is connected to the application board, the ICCDATA and
ICCCLK pins must not be used by other application devices, even if an ICC session is not in progress.
The RLink and its ADP include 50 Q serial resistors that provide a limited protection. However, there is
no guarantee that this protection will be enough to prevent damage occurring in the case of electrical
conflict.

For an ST7 without an ICCSEL pin, during normal operation the ICCCLK pin must be pulled-up

internally or externally (10KQ pull-up required in noisy environments). This is to avoid entering ICC
mode unintentionally during a reset.

7.2.2 ICCRESET pin

This pin resets the target microcontroller from the host PC through the RLink.

During an ICC session, you must ensure that the RLink controls the ST7’s RESET pin so that no
external reset is generated by the application board. This can lead to a conflict if the application reset
circuitry signal exceeds 5mA (push-pull output or pull-up resistor <1KQ). To avoid such conflicts, a
Schottky diode can be used to isolate the application reset circuit.

You can place a capacitor on the RESET pin, but it should not be too large; if the rising time of the
reset signal is too long, RLink might think that the device is not connected or not operational, making it
impossible to program and debug. 0.1uF should be fine. Larger values should be avoided.

7.2.3 ICCSEL/VPP pin

This pin is used on certain ST7 derivatives to supply a 12V programming voltage and/or to enter ICC
(program) mode. The application should include a pull-down resistor not smaller than 10KQ'".

7.2.4 1ICCOSC pin

This pin can be used for the RLink to provide an external clock to the target microcontroller.

If the clock is not provided by the application, or if the application clock source is not programmed in
the option byte then the ICCOSC pin of the ICC connector must be connected to the ST7’s OSC1 or
OSCIN pin.

RAISONANCE -37 -

Raisonance Tools for STM8/ST7 7. ICD-compliant application board

This connection allows you to start communication with your ST7 for in-circuit debugging and/or
programming using the Ignore Option bytes option. When doing so, your RLink provides a clock
source to initiate communication with the ST7.

The RLink provides a clock source at a frequency of 12MHz.

For ST7 devices with multi-oscillator capability, when the ICCOSC pin is connected, the OSC2 pin
should be grounded.

7.2.5 VDD_APPLI pin

This pin is used by tools with a power supply follower, such as RLink. This connection is needed by the
power supply follower to detect the supply voltage and power the RLink's I/Os accordingly.

RAISONANCE - 38 -

Raisonance Tools for STM8/ST7 8. Raisonance solutions for STM8/ST7 upgrades

8. Raisonance solutions for STM8/ST7 upgrades

8.1 RKit-STM8-Lite versus RKit-STM8-Enterprise

The RKit-STM8 capabilities are determined by a software-based license and are independent of the
hardware that is used with them. Software licenses are node-locked licenses - specific to a computer.
However, a dongle-based option is available when ordering.

- The RKit-STM8-Enterprise software license allows access to all features.
- The RKit-STM8-Lite has a limited build size of 32 Kbytes of output code.

8.2 RKit and RLink options

RKit-STM8-Lite
« All supported STM8A/L/S sub-families
« Raisonance compiler toolchain
« GUI interface for compiler control
« Project manager
« Debug run control, breakpoints and all views
« Full programming GUI
« Support via forums, email with standard priority

RKit-STM8-Enterprise (All features of the “Lite”, plus...)

« All supported ST7

« Script-based controls (C, C++, JScript)

« Control of version management tools (CVS, ...)

« Automatic C formatter

« Calculator (standard & hex)

« Comment stripper

« Unix line converter

« Support via forums, email with high priority
RLink-STD

« Debugging — No code size limitation

« Programming — No code size limitation
RLink-PRO

« Debugging — No code size limitation

« Programming — No code size limitation

RAISONANCE -39 -

Raisonance Tools for STM8/ST7 9. Conformity

9. Conformity

ROHS Compliance (Restriction of Hazardous Substances)

loTize products are certified to comply with the European Union RoHS Directive (2002/95/EC) which
restricts the use of six hazardous chemicals in its products for the protection of human health and the
environment.

The restricted substances are as follows: lead, mercury, cadmium, hexavalent chromium,
polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE).

C€ CE Compliance (Conformité Européenne)

loTize products are certified to comply with the European Union CE Directive.

In a domestic environment, the user is responsible for taking protective measures from possible radio
interference the products may cause.

F@ FCC Compliance (Federal Communications Commission)
loTize products are certified as Class A products in compliance with the American FCC requirements.

In a domestic environment, the user is responsible for taking protective measures from possible radio
interference the products may cause.

WEEE Compliance (The Waste Electrical & Electronic Equipment Directive)

loTize disposes of its electrical equipment according to the WEEE Directive (2002/96/EC).
Upon request, KOLABS can recycle customer’s redundant products.
For more information on conformity and recycling, please visit the loTize website www.iotize.com

RAISONANCE -40 -

http://www.keolabs.com/
http://www.keolabs.com/
http://www.keolabs.com/

Raisonance Tools for STM8/ST7 10. Glossary

10. Glossary

Term Description
ADC Analog Digital Converter
ADP RLink adaptor

CodeCompressor Post link code optimization tool

HDFlash High Density Flash

1/0 Input/Output

ICC In-Circuit Communication

ICD In Circuit Debugging

ICP In Circuit Programming

RBuilder Application builder that allows users to configure device peripherals and out put the

required C code automatically for their applications. Code is based on libraries
provided by the manufacturer.

REva Raisonance evaluation platform — modular evaluation boards with main evaluation
board (motherboard) and daughter boards featuring different microcontrollers

RFlasher Raisonance Flasher: Programming interface for user-friendly flash programming

Ride7 Raisonance Integrated Development Environment

RLink Hardware tool for in-circuit debugging and programming of a target microcontroller
mounted on an application board. Supports interface via JTAG, ICC and SWIM
protocols.

SCI Serial Communication Interface

SWIM Serial Wire Interface Module

XFlash Extended Flash: Flash memory based on EEPROM technology

RAISONANCE -41-

Raisonance Tools for STM8/ST7 11. Index
11. Index

Alphabetical Index

Add application code............ccccceviiiiiiiiiiiiiiinn. 13 Jumpers for RLiNk ST7 usingcccevvveeeennens 28
Add code to project.........cccoeeeiiiiiiii 16 Jumpers for RLink STM8 using ADP................. 25
Advanced breakpoints..............ccccccvvriiiieeininnnnnn. 30 Jumpers for ST7 REva board..............ccccevveeen... 29
ARM upgrades.........ccccceeeiiiiiiiieeieeeeeeeee 39 Jumpers for STM8 REva board..............ccccc...... 25
Breakpoints.........oooveviiiiiiicii e, 20 Launch the simulator..........ccccoooeviiiiiiiiiiiinieennnn. 18
Building @ new project..........cccceeeevvviiiiiiiieiiinnnnn. 9 Lead.. ..o 40
CE 40 Main file.......oeeiiiiee 13
CodeComMPreSSOr........cccceieeeiiiiireeeeeeree e 6 Option bytes.......coooiieiieeeee e 27
Compile Chain............coooeeciiiiiiiieeeeeeeeeeeeeee 6 Raisonance C toolchain................cccccceciviiieenee... 6
ComplianCe.......cccccuviiiiiiiieiiieeee e 40 Raisonance tools for ARM..........cccccvvveiieeennnnn.n. 5
Configure peripherals.........c.cccoccvvieiiiiiinneeee. 11 RBUIIdEr ..., 6
Configure RLINK ST7........cooooiiiiiiiiiiee e 26 RBUIIEr ... 10
Configure RLINK STM8..........cccoiiiieeeeeee 24 RC calibration............ooooiiii 28
Configure RLink for STM8.........cccccovviiiivneeeennn. 24 REva board..........cccoeiviiiiiieeci 23
Conformity........coooiiiiiiiiiii e 40 RFIASher......ccoooiiiii e 6
Creating @ New project.........ccvvvvvvvvevvvvvvenninnnnnnnn. 9 RIdET7 ... 6
Debug controls............ccooviiiiiiiiiiiiiiiiiiiiies 19 Ride7 and RKit-STM8 overview..............ccceeeennee 6
Debug oplions...........ueeeiiiiiiiiieiiiiieeeee 19 RLINK. .. 6
Debug with simulator............ccccoeiiiiiie 17 RLink features. ... 23
Debugging with hardware tools......................... 22 RLink STM8 Instant actions..............ccccoeeiieeen. 24
D1 =Tox 11 40 RLiNk USB driver........ccccociiiiiiiiiiieieeee e 23
Enterprise license.........cccccovvieeiiiiiiiiccc, 6 ROHS. ..o 40
Example projects........ccocceeeiiiiii i 7 Selecting hardware debug tool......................... 22
F O i 40 SIMUIALOr.....ee 6
Generate project........cccovvviiiiiiiiiiiee e 13 ST7 lbraries.........oeeeiiiiieie e 7
ICC connector for ST7......cccoiviiiiiiieiiiiiieeeeeies 37 STMB8/ST7 derivatives and RKit-STM8.............. 17
ICD-compliant application board....................... 36 STMB8/ST7 simulator.........ccccceeeiiieiiiiiiicie e, 17
Install new Ride7/Kit........cccccoeeviiiii 8 Supported derivatives.........c.cooceeeiiiiiiiiei, 7
Install Raisonance Tools for STM8/ST7.............. 7 SWIM connector for STM8...........coccvvvieveeennnne 36
Instant actions...........ciiiiiiiiiiii e, 28 Third party tools used with RKit-STM8................ 7
INtrodUuCtion..........ceeeeiiiiiiii 5 WEEE.... . 40

RAISONANCE

_42 -

Raisonance Tools for STM8/ST7

12. History

12. History

Date Modification

Jul 2008 Initial version

Jan 2009 Some file names updated.

Feb 2009 STMB8 information added. (only ST7 before)

Jan 2010 Corrected some references to menu entries.
Cleaned up some pictures.

Feb 2010 Added description of new RLink STM8 options.

Jun 2011 Added description of new registration process.

06 Nov 2012 Put in new template

02 Apr 2013 Modified sections 1.4, 2.1, 3.2, 3.3, 8.1, 8.2.

RAISONANCE -43 -

\OJize

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment
on the part of the manufacturer. The software described in this document is provided under license and
may only be used or copied in accordance with the terms of the agreement. It is illegal to copy the
software onto any medium, except as specifically allowed in the licence or non-disclosure agreement.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and retrieval systems, for any
purpose other than the purchaser’s personal use, without prior written permission.

Every effort has been made to ensure the accuracy of this manual and to give appropriate credit to
persons, companies and trademarks referenced herein.

This manual exists in electronic form (pdf) only.

Please check any printed version against the .pdf installed on the computer in the installation directory of
the latest version of the software, for the most up-to-date version.

The examples of code used in this document are for illustration purposes only and accuracy is not
guaranteed. Please check the code before use.

Copyright © loTize 2017 All rights reserved

	1. Introduction
	1.1 Purpose of this manual
	1.2 Scope of this manual
	1.3 Additional help or information
	1.4 Raisonance brand microcontroller application development tools

	2. Ride7 and RKit-STM8 overview
	2.1 RKit-STM8
	2.2 Third party tools used in conjunction with RKit-STM8
	2.3 Supported derivatives
	2.4 Installing Raisonance Tools for STM8/ST7
	2.5 Example projects

	3. Register the Raisonance tools for STM8/ST7
	3.1 Install and activate the new software
	3.2 Register using a serial key
	3.3 Register using a dongle

	4. Building a new project
	4.1 Creating a new project
	4.2 Creating a STM8 project
	4.2.1 Creating the application

	4.3 Creating a ST7 project
	4.3.1 Creating the settings for the new application
	4.3.2 RBuilder start-up
	4.3.3 Configuring the peripherals from RBuilder
	4.3.4 Generating your project
	4.3.5 Adding your application code
	4.3.6 Main file

	4.4 Adding your code to the project

	5. Debugging with simulator
	5.1 About the STM8/ST7 simulator
	5.2 STM8/ST7 derivatives supported by RKit-STM8
	5.3 Peripherals and main file used in example project
	5.4 Launch the simulator
	5.5 Debug options
	5.6 Debug controls
	5.7 Peripheral status view
	5.8 Breakpoints
	5.8.1 Code view
	5.8.2 Source view

	6. Debugging with hardware tools
	6.1 Selecting hardware debug tool
	6.2 RLink programming (ICP) and debugging (ICD) features
	6.2.1 RLink USB driver

	6.3 REva board
	6.4 Configuring RLink STM8
	6.4.1 RLink STM8 Instant actions
	6.4.2 Jumpers for RLink STM8 using ADP
	6.4.3 Jumpers for STM8 REva board

	6.5 Configuring RLink ST7
	6.5.1 Option bytes
	6.5.2 Instant actions
	6.5.3 RC calibration
	6.5.4 Jumpers for RLink ST7 using an adapter
	6.5.5 Jumpers for ST7 REva board
	6.5.6 Advanced breakpoints

	6.6 Hints and troubleshooting
	6.6.1 Example projects
	6.6.2 Testing USB driver, connections and power supplies
	6.6.3 Debug pins
	6.6.4 Handling option bytes for ST7
	6.6.5 Handling option bytes for STM8
	6.6.6 Command-line programming tool
	6.6.7 Protected addresses
	6.6.8 Limitations of RLink compared to the emulators
	6.6.8.1 ST7 monitor code
	6.6.8.2 Watchdog and reset
	6.6.8.3 Limitations for ST7 XFlash targets without debug module (ST72F26x,ST7FLITE0/Sx)
	6.6.8.4 Limitations for ST7 XFlash targets with debug module (ST7FLITE1/2/3x)
	6.6.8.5 Limitation for ST7 HDFlash targets

	6.6.9 Limitations for ST7 HDFlash targets without debug module

	7. ICD-compliant application board
	7.1 SWIM connector for STM8
	7.1.1 SWIMDATA pin
	7.1.2 SWIMRESET pin
	7.1.3 VDD_APPLI pin

	7.2 ICC connector for ST7
	7.2.1 ICCDATA and ICCCLK pins
	7.2.2 ICCRESET pin
	7.2.3 ICCSEL/VPP pin
	7.2.4 ICCOSC pin
	7.2.5 VDD_APPLI pin

	8. Raisonance solutions for STM8/ST7 upgrades
	8.1 RKit-STM8-Lite versus RKit-STM8-Enterprise
	8.2 RKit and RLink options

	9. Conformity
	10. Glossary
	11. Index
	12. History

